

Enseignements E.E.A.

Electronique

CAO Electronique

Logiciel Pspice A/D

Partie 1 (bases de la simulation)

année 2004

par Sylvain Géronimi

TABLE DES MATIERES

GENERALITES

Les thèmes Les librairies Liste des éléments simulables Les unités Les sources de tensions

CREATION D'UN PROJET

SAISIE DE SCHEMAS

Appel des composants en librairie Placement des composants Spécification des valeurs des composants

SIMULATION

Configuration du profil de simulation Configuration de l'affichage des résultats Lancement de la simulation

VISUALISATION DES RESULTATS

Visualisation manuelle Visualisation automatisée

FONCTIONS MATHEMATIQUES SUPPORTEES PAR PROBE ET PSPICE

APPLICATION n°1 : Analyse paramétrique en continu **APPLICATION n°2**: Analyse fréquentielle **APPLICATION n°3**: Analyse paramétrique APPLICATION n°4 : Analyse de Monte Carlo APPLICATION n°5 : Evaluation du bruit APPLICATION n°6 : Analyse Worst Case APPLICATION n°7 : Analyse de sensibilité APPLICATION n°8 : FFT et Série de Fourier APPLICATION n°9 : Utilisation de l'éditeur de stimuli en analogique APPLICATION n°10 : Modélisation comportementale **APPLICATION n°11 :** Première approche de la simulation mixte APPLICATION n°12 : Utilisation de l'éditeur de stimuli en numérique APPLICATION n°13 : Alimentation des circuits numériques APPLICATION n°14 : Utilisation d'un bus APPLICATION n°15 : Détection des erreurs logiques APPLICATION n°16 : Simulation Worst Case digitale

GENERALITES

LES THEMES

Analyse du continu

Configuration de l'analyse DC Variation primaire et variation secondaire Variation de la température Variation d'un paramètre de modèle Analyse de sensibilité Configuration de l'analyse de sensibilité Dépouillement des résultats

Analyse fréquentielle

Configuration de l'analyse AC Analyse de Monte Carlo Configuration de l'analyse de Monte Carlo Distribution spécifique Tracé d'histogrammes Analyse du Worst Case Configuration de l'analyse du Worst Case Dépouillement des résultats Analyse de bruit

Analyse transitoire

Configuration de l'analyse TRAN Calcul de la FFT Configuration de l'analyse FFT par Probe Excursion en fréquence Largeur des raies Configuration de l'analyse FFT par PSpice Calcul des coefficients de la série de Fourier Evaluation de la distorsion

Analyse des performances

Les "goal functions" Création d'une "goal function"

Circuit mixte ou logique

Equipotentielles analogiques, logiques, d'interface Pseudo-symboles Les niveaux logiques Modification de l'alimentation des circuits logiques Placement automatique des labels de bus Les erreurs logiques (SETUP et WIDTH) Simulation du Worst Case digital

Editeur de modèle

Editeur de stimuli

Utilisation d'un stimulus analogique Utilisation d'un stimulus de type signal ou horloge Utilisation d'un stimulus de type bus

Modélisation comportementale

Principe du paramétrage

Probe

Configuration de l'affichage des résultats Multifenêtrage Utilisation des curseurs de mesure Visualisation des résultat

LES LIBRAIRIES

ABM.OLB

Blocs fonctionnels : additionneur, soustracteur, dérivateur, intégrateur, filtre, ...

ANALOG.OLB

Résistance, condensateur, inductance, ligne de transmission. Sources de tension et de courant contrôlées en tension et en courant.

ANALOG_P.OLB

Résistance, condensateur, inductance, résistance variable, varistance.

BREAKOUT.OLB

Composants primaires (autres que les composants de base R, C, L, ...) Eléments avec tolérances (pour l'analyse de Monte Carlo). Interrupteur contrôlé en tension (**Sbreak**). Interrupteur contrôlé en courant (**Wbreak**). Potentiomètre, convertisseur ADC ou DAC.

EVAL.OLB

Environ 20 composants analogiques et 140 composants digitaux (incluant un composant programmable : le PAL 20RP4B).

SOURCE.OLB

Sources de tension et de courant analogiques, générateurs digitaux.

SOURCESTM.OLB

Sources de stimuli, 2 analogiques et 6 digitales.

SPECIAL.OLB

Eléments de contrôle de la simulation.

Remarque importante : Pour réaliser une simulation, il est indispensable de préciser la masse analogique (GND) du circuit. La masse a pour nom '0' dans la librairie SOURCE.OLB.

Celle-ci s'indique à l'aide du symbole 🕎 dans la barre d'outil.

LISTE DES ELEMENTS SIMULABLES

COMPOSANTS ANALOGIQUES

Composants passifs :

- **C** Condensateurs
- K Circuits magnétiques
- L Inductances
- R Résistances
- T Lignes de transmissions (avec ou sans pertes)

Sources contrôlées et indépendantes :

- E Source de tension contrôlée en tension
- **F** Source de courant contrôlée en courant
- **G** Source de courant contrôlée en tension
- H Source de tension contrôlée en courant
- I Source de courant
- V Source de tension

Interrupteurs :

- **S** Interrupteur contrôlé en tension
- W Interrupteur contrôlé en courant

Composants actifs :

- B Transistor AsGa
- **D** Diode, diode zener, diode varicap
- J JFET
- M MOSFET
- **Q** Transistor bipolaire
- **Z** IGBT
- **X** AO et comparateur
- X Thyristor
- X Triac
- X Opto-coupleur, Timer 555, PWM

COMPOSANTS DIGITAUX

Fonctions de base : NOT, OR, NOR, AND , NAND, JK, ... Convertisseurs A/N, N/A, ROM, RAM PLD (simulation à partir du fichier JEDEC)

LES UNITES

Les éléments passifs (résistances, inductances, condensateurs) ne nécessitent pas la spécification de l'unité (Ohm, Henry, Farad).

 $10^{9} = 1G \text{ ou } 1g$ $10^{6} = 1MEG \text{ ou } 1meg$ $10^{3} = 1K \text{ ou } 1k$ $10^{-3} = 1M \text{ ou } 1m$ $10^{-6} = 1U \text{ ou } 1u$ $10^{-9} = 1N \text{ ou } 1n$ $10^{-12} = 1P \text{ ou } 1p$ $10^{-15} = 1F \text{ ou } 1f$

LES SOURCES DE TENSION

(voir la librairie SOURCE.OLB)

VDC : source de tension continue

VAC : source de tension pour les analyses fréquentielles (ne convient pas pour les analyses temporelles)

VSIN : source de tension sinusoïdale pour les analyses temporelles

Paramétrage : VOFF = tension d'offset, VAMPL = amplitude, FREQ = fréquence TD = délai à l'apparition du signal (0 par défaut) DF = coefficient d'amortissement (0 par défaut) PHASE = phase (0 par défaut)

VEXP : source de tension exponentielle

Paramétrage : V1 = tension de repos, V2 = amplitude de crête TD1 = retard à la montée, TC1 = constante de temps de la montée

TD2 = retard à la descente, TC2 = constante de temps à la descente

VSFFM : source de tension modulée en fréquence

Paramétrage : VOFF = tension d'offset, VAMPL = amplitude FC = fréquence de la porteuse MOD = indice de modulation FM = fréquence du signal modulant

VPULSE : source de tension rectangulaire périodique

V1 = 0V V2 = 10V TD = 1ms TR = 100us TF = 200us PW = 1.7ms PER = 5ms

Paramétrage : V1 = tension de repos, V2 = tension impulsionnelle TD = temps de retard à l'apparition du signal, TR = temps de montée TF = temps de descente, PW = largeur d'impulsion, PER = période

VPWL : source de tension définie par segments

CREATION D'UN PROJET

La première étape consiste à créer un nouveau projet en sélectionnant dans OrCAD Capture **File/New/Project**. Une boîte de dialogue apparaît, vous devez spécifier le nom que vous allez donner à votre projet. Pour utiliser Pspice, choisissez l'option **Analog or Mixed Signal Circuit Wizard**. Tous les projets que vous allez créer au cours de cette formation seront enregistrés sous **C:\Program** *Files\OrCAD Demo\Applications*. Préciser le chemin d'accès dans **Location**.

New Project	×
Name	ОК
application5	Cancel
Create a New Project Using	<u>H</u> elp
- Analog or Mixed-Signal Circuit Wizard	
	Tip for New Users
C Board Wizard	The Analog or Mixed Signal Circuit Wizard is the
Programmable Logic Wizard	quickest way to get started designing and simulating an analog-digital schematic design
Schematic	doorgen.
L <u>o</u> cation	
C:\Program Files\OrCAD Demo\Applications	Browse

Le gestionnaire de projets vous permet de parcourir, gérer, archiver et restaurer vos projets. Un projet se présente de la manière suivante :

T Application 5

	Analog or A/D Mixed Mode
2 types de représentations d'un projet	🛅 File 💐 Hierarchy
Dossier contenant les ressources nécessaires à la conception Fichier schéma Dossier schéma principal (racine) Page schéma Librairie associée au projet Dossier déclarant les librairies susceptibles d'être utilisées par le projet Dossier contenant tous les rapports générés par le logiciel Dossier contenant tous les fichiers et librairies nécessaires à la simulation	Design Resources Application5.dsn SCHEMATIC1 PAGE1 Design Cache De
1	

Vous pouvez visualiser le contenu des dossiers en cliquant sur le dossier ou sur le signe + situé devant le nom du dossier. Le signe – permet de réduire la structure.

L'onglet **File** permet de visualiser l'organisation du projet sous forme de dossiers schéma, de fichiers schéma et de pages schémas.

L'onglet **Hierarchy** permet de visualiser la structure hiérarchique du projet (structure à plat, hiérarchies simples ou complexes).

Remarques :

- les projets sont enregistrés avec l'extension .OPJ
- le fichier schéma principal avec l'extension .DSN
- les librairies de composants avec l'extension .OLB
- les librairies de modèles avec l'extension .LIB

Lorsque vous validez la création de votre nouveau projet, le logiciel vous demande les librairies que vous souhaitez déclarer dans votre projet. Il en sélectionne certaines par défaut, vous pouvez en ajouter en cliquant sur **Add**. Cette déclaration n'est pas définitive.

Analog Mixed-Mode Project Wi Select the PSpice Part symbol libraries that you wish to include	zard		×
in your project.		Use these libraries	
abm.olb analog_p.olb breakout.olb eval.olb	Add >> << Remove	analog.olb source.olb sourcstm.olb special.olb	
	Terminer	Annuler	Aide

SAISIE DE SCHEMAS

Capture est la saisie de schémas de Pspice. C'est depuis la saisie de schémas que pourront être définis les signaux de test à appliquer au circuit, les types de simulation (fréquentielle, temporelle, statistique), les spécifications des nouveaux modèles ou encore le paramétrage des signaux à visualiser dans l'oscilloscope.

A la création du projet, Capture affiche automatiquement la fenêtre du gestionnaire de projet et ouvre une page schéma qu'il nomme par défaut **Page 1**. Vous pouvez renommer cette page à partir du gestionnaire de projets. Il suffit de sélectionner la page schéma **Page 1**, de cliquer sur le bouton droit de la souris et de choisir **Rename**.

Placez-vous sur la première page schéma et entrez dans le menu Place/Part.

11	IrCAL) Captu	ire											_	₽ ×
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>Place</u> <u>M</u> acro	P <u>S</u> pice <u>A</u>	Accessories _	<u>O</u> ptions	$\underline{W}\text{indow}$	<u>H</u> elp							
1	2		<u>P</u> art Parameteriza	ed Part	Shift+P	<u></u>	U? \$1	V 🕮	XI III	<u>N</u>	°. 🦻				
*		> 🖻	Database Pa	art											
			<u>₩</u> ire	:	Shift+W										
	Appli	ication	<u>B</u> us	:	Shift+B										 K
		Analog	Junction		Shift+J										₽>
	🗅 Fi	le 📴	Bus <u>E</u> ntry		Shift+E										
] 🦰	Design	<u>N</u> et Alias		Shift+N										
			Power												
			<u>G</u> round			[🛃 🖓 -	(SCHEM/	ATIC1 : P#	GE1)					_ 🗆 ×	12
			U <u>i</u> t-Page Lor	nnector				5				4			+
			<u>H</u> ierarchical I	BIOCK											
	4	 ∟ <mark>() _</mark>	Hierarchical	FOR											PHR
	- 🖻		No Copposi												<u> </u>
l E		DC_:-	NO CONNECT			1									GND
ILĽ	-]··· 🕒	горісі	Title Bloc <u>k</u>												
<u> </u>			Book <u>m</u> ark												
			Text		Shift+T										- District
			Line		01111111	H.									isu i
			Bectangle												≪C.
			Ellipse												×
			Arc												
			 Polyline		Shift+Y										
			Picture												l ≥∕
				_											
															ΙΞ
															그
															A
	Sessi	ion Log	BOX												
Place	зара	art.								0 items s	elected	Scale=100%	X=0.40	Y=1.40	

La barre d'icônes suivantes s'affiche. Elle vous permet de placer différents objets sur le schéma (composants, fils, bus, ...).

×	Select	Sélectionne des objets. C'est le mode normal.
	Part	Sélectionne des composants dans une bibliothèque et de les placer (Place/Part).
2	Wire	Dessine des fils (Place/Wire).
<u>N1</u>	Net Alias	Place des alias sur les fils et les bus (Place/Alias).
l	Bus	Dessine des bus (Place/Bus).
+	Junction	Place des jonctions (Place/Junction).
1	Bus Entry	Dessine des entrées de bus (Place/Bus Entry).
PHR	Power	Place des symboles d'alimentation (Place/Power).
	Ground	Place des symboles de masse (Place/Ground).
::	Hierarchical Block	Place des blocs hiérarchiques (Place/Hierarchical Block).
	Hierarchical Port	Place des ports hiérarchiques dans les pages schéma (Place/Hierarchical Port).
[®́H	Hierarchical Pin	Place des broches hiérarchiques dans des blocs hiérarch. (Place/Hierarchical Pin).
≪c	Off-page connector	Place des connecteurs de type « off-page » (Place/Off-page Connector).
×	No Connect	Place des symboles de non connexion sur des broches (Place/No Connect).
$\overline{}$	Line	Dessine des lignes (Place/Line).
2/	Polyline	Dessine des lignes brisées. Touche MAJ pour lignes non orthogonales (Place/Line).
	Rectangle	Dessine des rectangles. Touche MAJ pour obtenir des carrés (Place/Rectangle).
\circ	Ellipse	Dessine des ellipses. Touche MAJ pour obtenir des cercles (Place/Ellipse).
\supset	Arc	Dessine des arcs de cercle (Place/Arc).
A	Text	Insère du texte (Place/Text).

Appel des composants en librairie

L'appel des éléments en librairie s'effectue à partir du menu **Place/Part** ou avec l'icône correspondante. En choisissant cette option, le menu ci-dessous apparaît. On peut alors rechercher un élément parmi les librairies déclarées.

Place Part		×
Part: C C_var E EPOLY F FPOLY G GPOLY H 	Graphic © Normal © Convert Packaging Parts per Pkg: 1 Parts Parts	OK Cancel Add Library Remove Library Part Search Help
Ljbraries: ANALOG Design Cache EVAL SOURCE SOURCSTM SPECIAL	C? 	

Dans la fenêtre **Place Part**, vous pouvez rechercher un composant en tapant son nom, ou le début du nom (la liste des composants s'affiche), ou encore en utilisant le caractère * ou ? pour votre recherche.

Vous pouvez spécifier d'autres librairies grâce au bouton Add Library.

En sélectionnant un composant au niveau de la barre de défilement, vous visualisez la représentation graphique de votre composant.

D'autre part, vous pouvez effectuer une recherche sur un ensemble de librairies, cliquez sur le bouton **Part Search**. La fenêtre suivante s'affiche :

Part Search	×
Part <u>N</u> ame:	
C	0K.
Libraries:	Cancel
C/analog.olb c/analog_p.olb	(Begin <u>S</u> earch)
	<u>H</u> elp
Library <u>P</u> ath:	
C:\PROGRAM FILES\ORCAD DEMO\CAP	Browse
C. THOURAM THE STONICAD DEMOTICAL	<u></u> IOWSE

Placement des composants

Le placement des composants sous leur forme initiale n'est pas toujours approprié. Il est possible de modifier celle-ci en effectuant des opérations de rotation (CTRL+R ou Edit Rotate) et de miroir (Edit Mirror).

Le placement des fils est obtenu avec la commande Place/Wire ou avec l'icône correspondante.

Un premier clic sur le bouton gauche de la souris permet de fixer l'origine du fil, un deuxième clic permet de fixer l'extrémité de ce fil mais aussi l'origine d'un nouveau fil.

Pour quitter le mode insertion de fil : touche **Echap** ou **W** ou clic sur le bouton droit de la souris et sélectionnez **End Mode** dans le menu contextuel.

Pour nommer les fils importants (très pratique pour la simulation), utilisez la commande **Place/Net Alias** ou avec l'icône correspondante.

Spécification des valeurs des composants

On notera que tout composant placé sur le schéma (résistance, condensateur, ...) porte déjà une valeur par défaut. La modification de la valeur d'un composant peut se faire de deux manières différentes. On prend l'exemple d'une résistance.

- Soit en cliquant directement sur la valeur du composant et le menu suivant apparaît alors :

Display Properties	×
Name: Value V <u>a</u> lue: <mark>1n</mark>	Font Arial 7 (default) <u>C</u> hange <u>U</u> se Default
Display Format © Do Not Display © Value Only © Name and Value © Name Only © Both if Value Exists	Color Default ▼ Rotation ● 0° 180° ● 90° 270°
OK	Cancel <u>H</u> elp

Outre la possibilité d'affecter une valeur au composant, vous pouvez modifier le format d'affichage de la valeur et du nom du composant.

 Soit en cliquant sur le corps du composant et avec le bouton droit de la souris, sélectionner Edit Properties ; l'éditeur d'attributs ci-dessous apparaît :

Property Editor							_ 🗆 ×	
New Apply Display Delete Property Filter by: < All >						•		
	PCB Footprint	Name	Part Reference	Reference	Designator	Value	Primiti 🔺	
1 E SCHEMATIC1 : PAGE1 : C1	CK05	100172	C1	C1		1n	DEFAUL	
Parts Schematic Nets Title Blocks Image: Construction of the blocks								

Dans ce cas, il faut accéder au paramètre Value pour modifier la valeur du composant. En sélectionnant Display, vous accédez à la fenêtre Display Properties.

Display Properties	×
Name: Value	Font Arial 7 (default)
Value: 1n	<u>Change</u> Use Default
Display Format	
🔿 Do Not Display	
Value Only	Default 🗸
C Name and Value	- Potation
C Name Only	• 0° • • • • • • • • • • • • • • • • • •
C Both if Value Exists	C <u>9</u> 0° C <u>2</u> 70°
ОК	Cancel <u>H</u> elp

SIMULATION

Configuration du profil de simulation

Simulation Settings - tran	×
General Analysis Include Files Analysis type: Time Domain (Transient) Image: Comparison (Transient) Options: Image: Comparison (Transient) Image: Comparison (Transient) Options: Image: Comparison (Transient) Image: Comparison (Transient) Options: Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Image: Comparison (Transient) Im	Libraries Stimulus Options Data Collection Probe Window Bun to time: 1ms seconds (TSTOP) Start saving data after: 0 seconds Iransient options
	OK Annuler Appliquer Aide

La barre de défilement Analysis type permet de préciser le type de simulation à effectuer.

AC Sweep : Analyse fréquentielle (balayage en fréquence) Pour cette analyse, le simulateur calcule le point de repos du système et y linéarise ses caractéristiques. Il s'agit donc d'une analyse aux faibles signaux.

DC Sweep : Ce type d'analyse permet de faire varier une source de tension, une source de courant, un paramètre ou la température et ceci en régime continu. Dans ce type d'analyse, les inductances sont remplacées par des court-circuits et les condensateurs par des circuits ouverts.

Bias Point : Cette analyse permet de calculer le point de repos du système.

Time Domain (Transient) : Analyse temporelle.

Dans la fenêtre **Options**, il est possible de sélectionner une analyse avancée, celle-ci sera couplée à une analyse générale (temporelle, continue, fréquentielle). Elle permet d'analyser les performances du circuit en fonction de différents facteurs (température, valeurs des composants, sources,, …).

Choix possibles : analyse de Monte-Carlo, analyse Worst Case, analyse paramétrique, analyse en température.

Il est également possible de sauvegarder (Save Bias Point) ou de recharger (Load Bias Point) un point de calcul intermédiaire.

Configuration de l'affichage des résultats

Avant de lancer la simulation, il est possible de spécifier au logiciel de lancer automatiquement l'outil de visualisation des résultats.

Sélectionnez l'onglet Probe Window.

S	ulation Settings - tran	×
	eneral Analysis Include Files Libraries Stimulus Options Data Collection Probe Window	
Γ		
	Display Probe window when profile is opened.	
	Z Diselan Daka mindam	
	C during simulation	
	during simulation. after simulation has completed.	
	Show	
	All markers on open schematics.	
	C Last plot.	
	⊙ <u>N</u> othing.	
1	OK Annuler Appliquer Aide	1

Display Probe window when profile is opened : Affiche la fenêtre Probe quand un fichier (*.DAT) est ouvert.

Display Probe Window : Affiche automatiquement la fenêtre Probe au cours de la simulation ou à la fin de la simulation.

Dans le champ **Show**,

All markers on open schematics : Probe affiche les résultats de simulation pour tous les nœuds « attachés » à une sonde.

Last plot : Les résultats sont affichés dans la dernière configuration utilisée par Probe. **Nothing** : Aucun résultat n'est affiché.

Sélectionnez l'onglet Data Collection.

Simulation Settings - tran
General Analysis Include Files Libraries Stimulus Options Data Collection Probe Window
Schematic/Circuit Data Image: currents, and digital states Image: current state state state state state Image: current state st
OK Annuler Aide

Validez l'option qui vous intéresse du champ Schematic/Circuit Data,

All voltages, currents and digital states : Toutes les tensions et les courants du schéma sont édités dans le fichier (*.DAT) dans Probe.

All but internal subcircuit data : Probe ne sauvegarde pas les tensions et courants relatifs aux nœuds internes des sous-circuits.

At Markers only : Seuls les tensions et courants du schéma « attachés » à une sonde sont édités dans le fichier (*.DAT).

None : Les tensions et les courants du schéma ne sont pas édités dans le fichier (*.DAT).

Lancement de la simulation

Le lancement de la simulation s'effectue à l'aide de la commande PSpice/Run ou de l'icône

En lançant cette commande, le logiciel commence par annoter le schéma (si nécessaire), puis vérifie sa cohérence électrique (entrée en l'air, ...). Enfin, il génère la netlist du schéma qui sera interprétée par le cœur de simulation PSPICE.

Si aucune erreur n'a été rencontrée lors de la vérification électrique, la simulation s'exécute :

🔛 SCH	IEMATIC1	-tran - OrCAD	PSpice A/D - [applic	ation7-SCHI	EMATIC1-tran	dat (active	e)]			_ 8 ×
📓 <u>F</u> ile	<u>E</u> dit <u>V</u> ie	w <u>S</u> imulation	<u>T</u> race <u>P</u> lot T <u>o</u> ols <u>W</u> i	indow <u>H</u> elp						<u>_ 8 ×</u>
*	2	8		2 / %	3 3 B	CHEMATIC1	-tran	▶ II		
<u></u>	<u></u>	□ 1	🗏 片 🌠 🕅	of	水平	x 🖂 🕅	時間はな	\sim		
E	-									1
-										
a										
	 09	5	0.2ms	0.	4ms	0.0	óms	0.8	MS	1.0ms
					Tim	e				
-	🛃 applica	tion7								
X		A1 N1 forced to	Y atota far biza point		[
	Inable to co	nverge all DtoA i	interface devices	- 1 <u>-</u>						
T	ias point cal ransient Ana	lculated alysis			Time share of	7505.00	Time 1 000E 01	, ,		Fed. 1 0005 00
T S	ransient Ana imulation co	alysis finished molete		-	I ime step = 4	.709E-06)		End = 1.000E-03
						is∧ watch/				
For Help	, press F1					Time= 1.00	JOE-03	100%		

La fenêtre PSPICE est divisée en trois parties :

- la fenêtre où l'on peut visualiser les signaux,
- la fenêtre en bas à gauche qui indique le type et les opérations effectuées durant la simulation,
- la fenêtre en bas à droite qui donne l'évolution des variables de l'analyse (ici temporelle).

VISUALISATION DES RESULTATS

Visualisation manuelle des résultats

Au lancement de la simulation, la fenêtre de PSPICE affiche la variable sur l'axe des abscisses correspondant à l'analyse spécifiée (**Time** pour l'analyse temporelle par exemple). La commande **Trace/Add Trace** permet d'accéder à un menu dans lequel est présenté l'ensemble des signaux visualisables. Le nom des signaux qui sont sélectionnés à l'aide de la souris, s'affichent dans le champ **Trace Expression**.

A l'aide d'opérateurs prédéfinis, présents à droite de la fenêtre, vous pouvez traiter des signaux (somme, valeur absolue, partie réelle, phase, ...).

<u>Remarque</u> : Pour identifier rapidement le nom du signal que l'on souhaite visualiser, il est recommandé de nommer tous les signaux susceptibles d'être observés.

Visualisation automatisée des résultats

Il est possible de préciser directement sur le schéma quels sont les signaux à visualiser.

Depuis la saisie de schéma, accédez au menu PSpice/Markers/Markers Voltage Level ou cliquez

sur l'icône 🔎

A ce stade, le curseur de la souris prend l'aspect du symbole suivant

Placez sur le schéma, autant de sondes qu'il y a de signaux à visualiser. Veillez à ce que l'extrémité du symbole soit en contact avec le fil en question.

Retournez dans la fenêtre des résultats de simulation : les courbes sont automatiquement ajoutées.

Remarque : Toutes ces étapes sont développées à nouveau dans les applications n°1, 2 et 3.

fonction	description	PROBE	PSPICE
ABS(y)	<i>y</i>	OUI	OUI
SGN(y)	+1 si y>0, 0 si y=0, -1 si y<0	OUI	OUI
SQRT(y)	\sqrt{y}	OUI	OUI
EXP(y)	e ^v	OUI	OUI
LOG(y)	ln(y)	OUI	OUI
LOG10(y)	$\log(y)$	OUI	OUI
M(y)	Amplitude de y	OUI	NON
P(y)	Phase de y en degrés	OUI	NON
R(y)	Partie réelle de y	OUI	NON
IMG(y)	Parie imaginaire de y	OUI	NON
G(y)	Temps de propagation de groupe de y ($d\varphi(y)/df$)	OUI	NON
PWR(y,z)	$ \mathbf{x} ^{\nu}$	OUI	OUI
SIN(y)	Sinus(y) en radians	OUI	OUI
COS(y)	Cosinus(y) en radians	OUI	OUI
TAN(y)	Tangente(y) en radians	OUI	OUI
ARCTAN(y)	Arc tangente(y) en radians	OUI	OUI
D(v)	Dérivée de v par rapport à la variable sur l'axe 0x	OUI	NON
DDT(v)	Dérivée de v par rapport au temps	NON	OUI
S(v)	Intégrale de v par rapport à la variable sur l'axe 0x	OUI	NON
SDT(v)	Intégrale de v par rapport au temps	NON	OUI
DB(y)	Valeur de y en dB	OUI	NON
RMŠ(y)	Valeur efficace de y en fonction de l'axe 0x	OUI	NON
MIN(y)	Minimum de y	OUI	NON
MAX(y)	Maximum de y	OUI	NON
ENVMAX(y,n)	Enveloppe maximale de y, plus le nombre n est faible, plus l'enveloppe suit y.	OUI	NON
ENVMIN(y,n)	Enveloppe minimale de y, plus le nombre n est faible, plus l'enveloppe suit y.	OUI	NON
AVG(y)	$\frac{1}{y}\int y dx$ moyenne de y sur Ox (intégration entre 0 et x)	OUI	NON
AVGX(y,d)	$\frac{1}{d}\int y dx$ moyenne de y sur Ox (intégration entre x-d et x)	OUI	NON
IF(T,x,y)	Retourne x si la condition T est vérifiée, sinon y	NON	OUI
LIMIT(x,max,min)	Retourne min si x <min, max="" si="" x="">max, sinon x</min,>	NON	OUI

Fonctions mathématiques supportées par PROBE et PSPICE

APPLICATION n°1 : Analyse paramétrique en continu

Dans cette application, nous cherchons à tracer les caractéristiques statiques d'un transistor NPN. Il s'agit donc de tracer le réseau de caractéristiques $I_C = f(V_{CE})$.

Saisie du schéma

Les éléments nécessaires à la saisie du schéma se trouvent dans les librairies suivantes : ANALOG.OLB, SOURCE.OLB, BIPOLAR.OLB. Les sources de tension et de courant sont de type VDC et IDC, dans lesquels les champs DC ont été configurés avec une valeur arbitraire.

Le gestionnaire de projet nomme par défaut le dossier racine SCHEMATIC1. Vous pouvez sauvegarder le projet dans votre répertoire de travail.

[∞] Sélectionnez application1.dsn et choisir **Save as** (sauvegarde dans C:\...\applications).

Profil de simulation

Tout d'abord, il faut créer un profil de simulation à partir de Capture.

Accédez au menu Pspice/New Simulation Profile. Vous devez spécifier un nom que vous allez donner à votre analyse, par exemple 'traces' dans Name, puis cliquez sur Create. Ensuite, la fenêtre Simulation Settings apparaît.

Simulation Settings - traces			X
General Analysis Include File	es Libraries Stimulus I	Options Data Collection Probe Window	L,
General Analysis Include File Analysis type: DC Sweep Image: Comparison of the system Options: Primary Sweep Image: Comparison of the system Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Description Image: Comparison of the system	Sweep variable Sweep variable Sweep variable Sweep variable Surrent source Gilobal parameter Model parameter Imperature Sweep type Linear Cilogarithmic Deca	Options Data Collection Probe Window Name: V1 Model type: Y Barameter name: Y Stagt value: 0 End value: 20 Increment: 0.1	
	OK	Annuler Aide	

Pour l'analyse du continu, il est possible de faire varier deux paramètres (**Primary Sweep** et **Secondary Sweep**) de façon linéaire, logarithmique ou par valeurs croissantes quelconques.

On veut que la tension V1 varie de 0 à 20 V par pas de 0.1 V en balayage linéaire.

Cliquez sur Voltage source, puis donnez le nom de la source dont la valeur DC va varier et configurez sa variation.

Pour chaque valeur prise par la source de tension V1, on fait varier la source de courant I1 de 20 μ A à 100 μ A par pas de 20 μ A en balayage linéaire.

Sélectionnez Secondary Sweep (deuxième variation) dans Options. Cliquez sur Current source, puis donnez le nom de la source dont la valeur DC va varier et configurez sa variation. Valider la seconde variation en cliquant dans la case à cocher.

Simulation Settings - traces	×
General Analysis Include File	es Libraries Stimulus Options Data Collection Probe Window
General Analysis Include Fill Analysis type: DC Sweep Include Fill Options: Primary Sweep Include Fill Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Load Bias Point	es Libraries Stimulus Options Data Collection Probe Window Sweep variable Quotage source Name: II Quirrent source Model type: Giobal parameter Model type: Model parameter Model rame: Imperature Earameter name: Sweep type Linear Linear Logarithmic Decade End value: 20u Increment: 20u Value list Value list
	OK Annuler Appliquer Aide

Lancement de la simulation

Il est possible de configurer l'affichage des résultats. Pour cela, sélectionnez l'onglet **Probe Window** dans la fenêtre **Simulation Settings**.

Il peut être intéressant d'activer **Last plot** pour obtenir les résultats affichés dans la dernière configuration utilisée par Probe.

Lancez la simulation à l'aide de la commande Pspice/Run ou de l'icône

La fenêtre Pspice est divisée en trois parties :

- la fenêtre où l'on peut visualiser les signaux (variable V1 en abscisses),
- la fenêtre en bas à gauche qui indique les opérations effectuées,
- la fenêtre en bas à droite qui donne la valeur de départ (**Start value**), la valeur finale (**End** value) et le pas (**Increment**) des paramètres I1 et V1.

The End View Simulation Tacke Bio Tools Window Webp P E E E M View Simulation Tacke Bio Tools Window Hebp P P E E M View Simulation Tacke Bio Tools Window Hebp P P E E M View Simulation Tacke Bio Tacke	SCHEMATIC1-traces - OrCAD PSpice A/D D	emo - Capplication1-SCHEMA	TIC1-traces dat (active)]		
SCHEMATICI-traces SCHEMATICI-trac	Eile Edit View Simulation Irace Plot Tool	s <u>W</u> indow <u>H</u> elp			
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	1 • 🕞 😂 🗉 🎒 🕺 🛍 😂	으 🦽 % % 📗 SCH	EMATIC1-traces	ш	
But B	🔍 🔍 🔍 🔍 💷 🗽 🚧 🕅	小子 水水子 14	对政备驻住义		
e0u 4u 8u 12u 16u 2gu e0u 4u 8u 12u 16u 2gu u u u u u u u explication1 x Reading and checking circuit x x Freeding and checking circuit x x Freeding and checking circuit x x x Freeding and checked, no errors x					1
6U 4U 8U 12U 16U 26U 0 4U 8U 12U 16U 26U 0 U U U 16U 26U 0 Circuit read in and checking circuit Image: Circuit read in and checked, no errors Image: Circuit read in and checked, no errors Image: Circuit read in and checked, no errors End = 100.0E-06 End = 100.0E-06 End = 20 0 Crcuit read in and checked, no errors Image: Circuit read in and checked, no errors Image: Circuit read in and checked, no errors End = 20 End = 20 0 Circuit read in and checked, no errors Image: Circuit read in and checked, no errors Image: Circuit read in and checked, no errors End = 20 0 Circuit read in and checked, no errors Image: Circuit read in and checked, no errors Image: Circuit read in and checked, no errors 0 Circuit read in and checked, no errors Image: Circuit read in and checked, no errors Ima					
gu 4U 8U 12U 16U 2gU gu 4U 8U 12U 16U 2gU u U U U U U U image: set of the set					
90 40 80 120 160 260 90 90 0 0 0 0 260 90 90 0 0 0 0 260 90 90 0 0 0 0 260 90 90 0 0 0 0 0 0 90 90 120 160 260 0<					
90 40 80 120 160 260 0 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
90 40 80 120 160 260 U U U U 0 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
90 40 80 120 160 260 U U U 0 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
g0 40 80 120 160 260 U U U U 0 0 Image: State and St					
8U 4U 8U 12U 16U 28U U U U U U U U U Image: start and checked, no errors DC Analysis Image: start and checked, no errors Image: start and ch					
BU 4U BU 12U 16U 2 BU U <					
6U 4U 8U 12U 16U 2 8U U U U U U U U U Image: start and checked, no errors DC Analysis Image: start and checked, no errors Image: start and c					
8U 4U 8U 12U 16U 2 8U U_U1 U_U1 Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, no errors Image: DC Analysis Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, no errors Image: Start and Checked, Im					
80 40 80 120 160 260 U U U U Image: second state of the second state					
UU1 ■ application1 ■ Reading and checking circuit ■ Cricuit read in and checked, no errors DC Analysis finished Simulation complete ■ Analysis (Watch) Devices / Tor Help, press F1 V_V1 = 20 100% V_V1 = 20 V_V1 = 2	0V 4V	8V	120	16V	200
application1 Reading and checking circuit Circuit read in and checked, no errors DC Analysis DC Analysis finished Start = 20.00E-06 L11 = 100.0E-06 End = 100.0E-06 Start = 0 V_V1 = 20 End = 20 Construction		V_V1			
	application1				
Kit Heading and checking circuit Circuit read in and checked, no errors DC Analysis DC Analysis finished Start = 20.00E-06 Start = 0 V_V1 = 20 End = 100.0E-06 End = 100.0E-06 Start = 0 V_V1 = 20 End = 20 End = 20					
DC Analysis DC Analysis finished DC Analysis finished Image: Start = 20.00E-06 Image: Im	Reading and checking circuit Circuit read in and checked, no errors				
DC Analysis Initished Start = 0 V_V1 = 20 End = 20 Simulation complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete For Help, press F1 Image: Complete initial complete Image: Complete initial complete Image: Complete initial complete	DC Analysis	Start = 20.00E-06	S 1 = 100.0E-06		End = 100.0E-06
Image: Second	Simulation complete	Start = 0	V_V1 = 20		End = 20
For Help, press F1 V_V1 = 20 100%			Watch \ Devices /		
	For Help, press F1		V_V1 = 20	100%	

Visualisation des résultats

Au lancement de la simulation, la fenêtre de Pspice affiche la variable V_V1 sur l'axe des abscisses. Dans notre cas de figure, aucun signal ne s'affiche automatiquement puisque c'est le premier lancement de simulation. Sinon l'activation de **Last plot** dans l'onglet **Probe Window** dans la fenêtre **Simulation Settings** aurait eu pour effet de charger la dernière configuration utilisée par Probe.

Accédez au menu **Trace/Add trace** qui ouvre la fenêtre ci-dessous.

Simulation Output Variables Functions or Macros Analog Operators and Functions
Analog Operators and Functions
I(11) Image Processing Image Pro

L'ensemble des signaux visualisables est présenté dans le champ Simulation Output Variables.

<u>Remarque</u>: Pour identifier rapidement le nom du signal que l'on souhaite visualiser, il est recommandé de nommer tous les signaux susceptibles d'être observés (**Place/Net Alias** ou **Pspice/Markers**)

Dans notre exemple, sélectionnez IC(Q1) qui s'affiche dans le champ Trace Expression, puis terminez par OK.

En sélectionnant la courbe, puis en cliquant avec le bouton droit de la souris, vous avez accès à un menu contextuel. Sélectionnez **Properties** pour modifier la couleur, l'épaisseur du trait, ...

Autre application

Le but est d'observer la variation d'une caractéristique $I_C = f(V_{CE})$ en fonction de la température. Le courant I_B est fixe et vaut 20 μ A, la température variant de 0 à 200 °C par pas de 50 °C.

- Modifiez au sein du schéma, la valeur de la source de courant l1 à la valeur indiquée.
- Créez un nouveau profil de simulation de nom 'température'. Dans la fenêtre Simulation Settings, entrez dans le menu DC Sweep. Configurez Primary Sweep comme dans l'application précédente, puis Secondary Sweep le paramètre Temperature comme souhaité.

Autre application

Le but est de tracer le réseau de caractéristiques $I_C = f(V_{CE})$ pour différentes valeurs du beta du transistor à $I_B = cte$. Le courant I_B reste fixe à 20 μ A, la valeur du beta variant de 150 à 350 par pas de 100.

Cliquez sur le transistor pour le sélectionner, puis accédez au menu Edit/Pspice Model.

La fenêtre de l'outil Model Editor s'affiche :

🖺 APPLICATION1.lib:Q2N2222 - OrCAD Mod	el Editor - [Q2N2222]	
Eile Edit View Model Plot Tools Windo	w <u>H</u> elp	_ B ×
	ă, ă III ₫ + C 🖻	
Models List 💌 .model Q2N2222	NPN(Is=14.34f Xti=3 Eg=1.11 V	Vaf=74.03 Bf=255.9 Ne=1.307 🛛 📃
Model Name Type +	Ise=14.34f Ikf=.2847 Xtb=1.5	Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
Q2N2222* BJT +	Cjc=7.306p Mjc=.3416 Vjc=.75	Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+	Tr=46.91n Tf=411.1p Itf=.6 V	tf=1.7 Xtf=3 Rb=10)
*	National pid=19	case=T018
*	88-09-07 bam creation	
		7
		<u> </u>
Ready		NUM ///

Le paramètre recherché est Bf=255.9 (Beta forward).

Méthode 1 :

Méthode 2 :

Allez dans la fenêtre de l'outil Model Editor (Edit/Psice Model) et modifiez Bf=255.9 en Bf={Beta}. Sauvegardez le modèle au sein de votre projet. L'éditeur de modèles extrait le modèle depuis la librairie originale et le copie dans une librairie attachée au projet (dossier Model Librairies du gestionnaire de projet). Ce mécanisme laisse intacte les librairies du logiciel.

Simulation Settings - beta2		X
General Analysis Include Fil	es Libraries Stimulus	Options Data Collection Probe Window
General Analysis Include Fil Analysis type: DC Sweep ▼ Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	es Libraries Stimulus Sweep variable C Voltage source C Current source G Global parameter C Model parameter C Temperature Sweep type C Linear C Logarithmic Deco	Options Data Collection Probe Window Name:
	ОК	Annuler Aide Aide

A la fin de cette application, le gestionnaire du projet se trouve sous la forme suivante :

📷 application1	1
Analog or A/D Mixed Mode	
💼 File 🎭 Hierarchy	
🖃 💼 Design Resources	1
🚊 🔛 .\application1.dsn	H
	H
PAGE1	H
庄 💼 Design Cache	H
庄 💼 Library	H
📺 🖷 Outputs	H
📄 🖷 🧰 PSpice Resources	H
Include Files	H
👝 🧰 Model Libraries	H
.\application1.lib	H
📄 🗂 🛄 Simulation Profiles	H
SCHEMATIC1-beta1	H
SCHEMATIC1-beta2	H
SCHEMATIC1-temperature	
SCHEMATIC1-traces	
I Stimulus Files	

Librairie contenant la copie du modèle Q2N2222

Les 4 profils de simulation Crées et stockés dans le dossier 'Simulation Profiles'

APPLICATION n°2 : Analyse fréquentielle

Dans cette application, nous cherchons à tracer la réponse en fréquence du transfert en tension d'un filtre du premier ordre dans le diagramme de Bode.

Saisie du schéma

Les éléments nécessaires à la saisie du schéma se trouvent dans les librairies ANALOG.OLB et SOURCE.OLB. La source de tension est de type VAC.

Remarques :

- le choix de la valeur 1V et phase nulle pour la source d'entrée V1 permet d'obtenir le transfert en tension en visualisant tout potentiel de nœud du circuit.
- on nomme l'équipotentielle de sortie 'out' (**Place/Alias**) afin d'identifier facilement la variable à visualiser dans Probe.

Profil de simulation

On crée un profil de simulation à partir de Capture.

Accédez au menu Pspice/New Simulation Profile. Donnez un nom à votre analyse, par exemple 'RCBode' dans Name, puis cliquez sur Create. Ensuite, la fenêtre Simulation Settings apparaît.

Simulation Settings - RCBode General Analysis Include Files	Libraries Stimulus	Options Data Collection	Probe Window
Analysis type: AC Sweep/Noise	AC Sweep Type Linear Logarithmic Decade Noise Analysis Enabled	Start Frequency: End Frequency: Points/Decade:	1 10k 50
	ОК	Interval:	Aide

- Paramétrez l'analyse en fréquence de 1 Hz à 10 kHz avec 50 points par décade.
- → Lancez la simulation (**Pspice/Run**).

Résultats de la simulation

Le module de la fonction de transfert est ainsi tracé dans le plan de Bode. La phase n'ayant ni même échelle, ni même unité, on ajoute une nouvelle fenêtre de visualisation.

 A l'aide de Plot/Add Plot to Window, puis Trace/Add, sélectionnez l'opérateur P(), puis sélectionnez la variable V(out).

Pour connaître précisément la valeur d'un signal en un point particulier, PSpice dispose de deux curseurs que l'on active à l'aide de la commande **Trace/Cursor/Display** ou sur l'icône

PSpice affiche dans une fenêtre séparée les coordonnées de ces deux curseurs et les différences ΔX et ΔY :

Probe C	ursor	
A1 =	159.681,	-3.0253
A2 =	159.681,	-45.094
dif=	0.000,	42.069

Sur le bouton droit de la souris est attaché le premier curseur (A1), sur le bouton droit de la souris le second curseur (A2).

Pour placer des marqueurs sur la courbe, sélectionnez l'icône

APPLICATION n°3 : Analyse paramétrique

Dans cette application, nous présentons la mise en œuvre d'une analyse paramétrique permettant de répéter une analyse temporelle ou fréquentielle pour différentes valeurs d'un composant.

Saisie du schéma

Ici, la simulation temporelle sera répétée pour plusieurs valeurs de R1.

Créez un nouveau projet dans **File/New/Project**, appelez le 'application3' et saisissez le schéma.

V1 est une source de tension VPULSE délivrant un échelon de tension à t=0 et telle que : tensions 0V à 1V; période 200 ms; largeur d'impulsion 100 ms; temps de montée et de descente 1µs; délai 0s.

Pour définir le signal, cliquez sur V1 dans le schéma, éditez Edit/Properties (ou bouton droit de la souris et choisir Edit Properties), puis remplissez les champs V1, V2, TD, TR, TF, PW, et PER.

E	i.	Property Editor											_ 🗆 ×
ſ	New Apply Display Delete Property Filter by: < All >												
ľ			TR	٧2	V1	PER	₽₩	TF	TD	PCB Footprint	Name	Part Reference	Referer 🔺
	1	E SCHEMATIC1 : PAGE1 : V1	1u	1	0	200m	100m	1u	0		100003	V1	V1
E		Parts (Schematic Nets	Pin	s X	Titl	e Bloci	ks /						

Principe du paramétrage

- Remplacez la valeur de la résistance par un nom de variable entre accolade, {Rvar} par exemple.
- Placez sur le schéma l'élément PARAM avec Place/Part (dans librairie SPECIAL.OLB). Pour déclarer ce paramètre, éditez les propriétés Edit/Properties, puis cliquez sur New Column, remplissez les champs Name et Value par 'Rvar' et '50' respectivement et terminez par OK.

Add New Property	,	×
Property Name:		
Rvar		
	OK	Consul
	UK	Lancel

	Property Editor					_ 🗆 ×
	New Apply Display	Delete Property	Filter by: < All >			•
		Source Package	Power Pins Visible	PSpiceOnly I	D Rvar	
1	SCHEMATIC1 : PAGE1 : 1	PARAM		TRUE	50	
	Parts (Schematic Nets)	{ Pins { Title Bloc	ks /			

Pour visualiser ces données dans le schéma, sélectionnez la colonne **Rvar** et cliquez sur **Display**, puis choisissez **Name and Value**.

Display Properties	×
Name: Rvar Value: 50	Font Arial 7 <u>C</u> hange <u>U</u> se Default
Display Format Do Not Display Yalue Only Name and Value Name Only Both if Value Exists	Color Default Rotation
ОК	Cancel <u>H</u> elp

Dans Pspice/New Simulation Profile, donnez un nom ('tran') puis cliquez sur Create. Choisissez l'analyse temporelle dans Analysis type et accédez à l'option Parametric Sweep pour spécifier les valeurs du paramètre Rvar.

Dans ce cas de figure, il n'y a pas de progression linéaire ou logarithmique des valeurs. On utilise donc une liste de valeurs en ordre croissant.

Simulation Settings - tran			×
General Analysis Include File	es [Libraries] Stimulus] (Options Data Collection	Probe Window
Analysis type:	Sweep variable	Namer	
Options: General Settings Monte Carlo/Worst Case Parametric Sween	 <u>C</u>urrent source <u>G</u>lobal parameter <u>M</u>odel parameter <u>T</u>emperature 	Model type: Model name: Parameter name: Rvar	
☐ Temperature (Sweep) ☐ Save Bias Point ☐ Load Bias Point	Sweep type C Linear C Logarit <u>h</u> mic Deca	Sta <u>r</u> t value: End v <u>a</u> lue: Increment:	
		200 500	
	ОК	Annuler <u>Appliquer</u>	Aide

Toujours dans la même fenêtre, sélectionnez General Settings.

Run to time : Durée totale d'analyse.

Start saving data after : Attendre avant l'enregistrement des résultats (facultatif).

Transient options :

- Maximum step size : taille maximum du pas de calcul (facultatif).
- Skip the initial bias point calculation : possibilité d'empêcher le calcul du point de repos du système.

Simulation Settings - tran	×
General Analysis Include Files	Libraries Stimulus Options Data Collection Probe Window
Analysis type: Time Domain (Transient) ▼ Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Bun to time: 3ms seconds (TSTOP) Start saving data after: 0 seconds Iransient options
	OK Annuler <u>Appliquer</u> Aide

- Dans **Run to time**, spécifiez une analyse de 3 ms, puis lancez la simulation.

Si vous cliquez sur une courbe avec le bouton droit de la souris, une fenêtre s'ouvre pour vous fournir toutes les informations relatives à cette courbe.

Analyse de performances

Par ailleurs, il est possible d'afficher une des performances du circuit en fonction d'un paramètre (ici Rvar). Dans cet exemple, nous étudierons le temps de montée de 10% à 90% de la valeur finale du signal V(out) en fonction de Rvar.

Entrez dans le menu Plot/Performance Analysis ou sélectionnez l'icône

Cette action a pour effet de placer le paramètre Rvar sur l'axe X dans un nouveau graphe. De plus, la fenêtre **Add Trace** propose maintenant un certain nombre de « Measurements » qui permettent d'évaluer une caractéristique particulière sur une famille de courbes. Voici la signification de quelques-unes unes d'entre elles :

BandWidth : Bande passante d'un filtre.

CenterFrequency : Fréquence centrale d'un filtre passe-bande.

OverShoot : Dépassement

Risetime_NoOvershoot : Temps de montée de 10% à 90% de la valeur finale (signaux sans dépassement).

Risetime_StepReponse : Temps de montée pour un signal avec Overshoot.

Le fichier PSPICE.PRB est documenté, imprimez le pour plus d'informations.

AUTRE METHODE : Création de version de schémas et simulations multiples

Pspice permet de lancer autant de simulations que l'on veut en même temps. Nous allons donc simuler simultanément quatre versions du schéma du filtre du second ordre avec une valeur différente pour la résistance dans chaque version.

Création des dossiers schémas

La première étape consiste à créer quatre dossiers schémas qui contiennent chacun le schéma du filtre avec des valeurs de résistance allant de 50 à 500 Ω . Le dossier schéma avec la valeur 50 s'appellera FILTRE, les trois autres seront nommés COPIE1 (R1=100), COPIE2 (R1=200), COPIE3 (R1=500). Les pages schéma porteront le même nom que les dossiers schémas par commodité.

- Cliquez sur le dossier '.\application3b.dsn' et créez un nouveau dossier 'COPIE1' en accédant au menu Design/New Schematic.... Cliquez sur ce dossier et créez une page schéma à l'aide de Design/New Schematic Page... que vous nommerez 'COPIE1'. Faites de même pour 'COPIE2' et 'COPIE3'.

Configuration de la simulation

Créez un nouveau profil de simulation que vous nommerez FILTRE dans lequel vous déclarez une simulation temporelle de 3ms. Maintenant, il faut déclarer le dossier COPIE1 comme schéma racine

(**Design/Make Root**) et créer un profil de simulation COPIE1 identique au profil FILTRE (**Inherit from**). Même démarche pour COPIE2 et COPIE3.

New Simulation	×
Name:	Create
COPIE1	Cancel
Inherit From:	
FILTRE-tran	
Root Schematic: COPIE1	

Les quatre profils de simulation sont créés et stockés dans le dossier SIMULATION PROFILES du gestionnaire de projets.

Lancement de la simulation

PSPICE lance les quatre simulations l'une après l'autre. Dans la fenêtre Simulation Queue, vous pouvez observer l'avancement des simulations. Lorsque PSPICE a terminé, les quatre fichiers de simulation ou profils de simulation FILTRE.SIM, COPIE1.SIM, COPIE2.SIM, COPIE3.SIM se trouvent dans la fenêtre **Completed Simulations**.

Visualisation des courbes

Pour visualiser les profils de simulation, il faut ouvrir les quatre fichiers FILTRE.DAT, COPIE1.DAT, COPIE2.DAT, COPIE3.DAT qui se trouvent dans votre répertoire de travail.

Vous pouvez noter la présence des onglets en bas de la fenêtre PSPICE, qui vous permettent de repérer quelle simulation vous visualisez et de basculer d'une simulation à l'autre.

→ Sur les graphes, affichez la tension V(out) à l'aide du menu **Trace/Add traces**.

Vous pouvez visualiser les quatre courbes sur une même page avec l'option Window/Tile Horizontally.

APPLICATION n°4 : Analyse de Monte Carlo

L'analyse de Monte Carlo est utilisée principalement pour évaluer le comportement d'un système en fonction des tolérances des composants qui le composent.

Sur un composant donné, il est possible de définir :

- la tolérance du composant et sa distribution (densité de probabilité),
- la tolérance par lot et sa distribution, qui traduisent la dérive de production d'un composant d'un jour à l'autre lors de sa fabrication.

Sur les composants de base (R, L, C, …), il est possible d'utiliser l'attribut TOLERANCE. Dans ce cas, on considère que toutes les tolérances ont la même répartition qui correspond à la répartition par défaut défini dans la fenêtre **Simulation Settings** au niveau de l'option **Use Distribution**. Le simulateur connaît deux distributions **Uniform** et **Gaussian**, mais il est possible de définir sa propre distribution à l'aide de la directive **Distributions**.

Distribution spécifique

Si vous voulez définir une tolérance sur un composant avec une répartition différente des autres tolérances, il faudra remplacer le composant de base (R, L, C) par un composant primaire (Rbreak, Lbreak, Cbreak) de la librairie BREAKOUT.OLB, puis définir le modèle de ce composant (tolérance et répartition) par accès au menu **Edit/Pspice Model...**

Par exemple, après placement d'un composant Rbreak sur le schéma, il faut lui associer son nouveau modèle.

Célectionnez cette résistance sur le schéma, puis accédez au menu Edit/Pspice Model :

🚝 APPL14.lib - OrCAD Model Editor - [Rbreak]	_ 🗆 🗙
📳 Eile Edit View Model Plot Tools Window Help	_ B ×
	+ Ľ 🖻
Models List .model Rbreak RES R=1	A
Model Name Type	
Rbreak* RES	-
	Þ
Ready	NUM ///

Ce modèle définit une résistance dont la tolérance est de 5% avec une loi de probabilité uniforme. Il est sauvegardé dans une librairie portant le même nom que celui du projet (application6.lib) qui est stocké dans le dossier **Model Libraries** du gestionnaire de projet.

Pour d'autres résistances, modifiez l'attribut **model** par **model= Rmod**.

Si l'on veut une loi de probabilité gaussienne : **.model Rmod RES(R=1 DEV/GAUSS=5%)** Attention, 5% représente la valeur de σ , ce qui signifie que la résistance est définie à ± 15%.

Autre exemple : .model Rmod RES(R=1 DEV=1% LOT/GAUSS=5%)

Utilisation d'une distribution personnelle : .distribution Distri_perso (-1,0) (0,1) (1,0) .model Rmod RES(R=1 DEV=1% LOT/Distri_perso=5%)
Le projet 'application4.OPJ' s'appuie sur un filtre réjecteur à 3 MHz. Le but est de visualiser, sous forme d'histogramme, la répartition de la fréquence de réjection lorsque l'on définit des tolérances de 20% sur les selfs et les capacités. La bande de fréquence à explorer est de 300 kHz à 30 MHz.

Saisie du schéma

<u>Remarque</u>: pour définir les tolérances, cliquez sur le composant dans le schéma, éditez **Edit/Properties** (ou bouton droit de la souris et choisir **Edit Properties**). Remplissez le champ TOLERANCE, puis cliquez sur **Apply**. Si vous voulez faire apparaître la valeur sur le schéma, cliquez sur **Display Properties** et choisissez **Value Only**.

Configuration de l'analyse de Monte Carlo

Plusieurs analyses (runs) peuvent être lancées. Le run n°1 correspond à la simulation du circuit pour toutes les valeurs NOMINALES des composants. Ensuite, pour un run donné et pour chaque composant possédant une tolérance, le logiciel « tire » une valeur aléatoire du composant selon sa distribution et sa tolérance. Lorsque toutes les valeurs sont déterminées, le logiciel effectue une simulation et passe au run suivant.

General Analysis Include Fi	les Libraries Stimulus Options Data Collection Probe Window
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	 Monte Carlo ✓ Worst-case/SensitivityOutput variable: V(out) Monte Carlo options Mumber of runs: 2 [1400] Use distribution: Uniform ▼Distributions Bandom number seed: 500 [132767] Save data from All ▼ runs
	Worst-case/Sensitivity options Vary devices that have both DEV and LOT Limit devices to type(s): Save data from each sensitivity run
	More Settings

La configuration pour 2 analyses de Monte Carlo est la suivante :

Function	04
The function is performed on an output variable (for example, V(1)). The result is listed in the output (.OUT) file only.	Cancel
Eind: the minimum value (MIN)	
Threshold value:	
Evaluate only when the sweep variable is in the range:	
to V	
Worst-Case direction	

Analysis type : L'analyse de Monte Carlo s'effectuera sur l'analyse AC Sweep. Options : Sélectionnez l'analyse de Monte Carlo/Worst Case, puis validez (case à cocher).

Cliquez sur Monte Carlo options :

Output variable : Signal étudié par l'analyse de Monte Carlo.

Number of runs : Indiquez 2 itérations pour l'analyse.

Use distribution : Choisir Uniform.

Random number seed : base aléatoire (rien par défaut).

Save data from : Sélectionnez ALL afin que les résultats de toutes les itérations soient visualisables.

Cliquez sur More Settings :

Find : YMAX : Recherche l'écart maximal entre la courbe nominale et la courbe de l'itération n.

MAX : Recherche la valeur maximale sur la courbe pour l'itération n.

MIN : Recherche la valeur minimale sur la courbe pour l'itération n.

- RISE : Recherche la première occurrence supérieure à la valeur RISE/FALL.
- FALL : Recherche la première occurrence inférieure à la valeur RISE/FALL.

Sélectionnez également la case à cocher List model parameter values in the output file for each run, pour connaître les valeurs de chaque composant pour chacun des tirages (voir fichier output).

- Après avoir effectuer les opérations précédentes, définissez le balayage fréquentiel indiqué, puis lancez la simulation.
- Hisualisez les résultats dans Pspice et dans le rapport de simulation.

On effectue, maintenant, une analyse de performance en vous intéressant à la fréquence de réjection de manière à afficher la répartition de cette fréquence.

<u>Attention</u> : Il n'existe pas de « Measurement » permettant de retrouver la coordonnée X d'un point minimum d'une courbe.

Pour créer ce « Measurement », accédez à la fenêtre Trace/Measurements, puis cliquez sur New.

<u>Remarque</u> : Si vous devez générer un « Measurement » pour une simulation particulière, cette fonction doit être créée en locale (**use local file**). En revanche, si ce « Measurement » doit être visible par tous les utilisateurs du logiciel, elle doit être définie de façon globale (**use global file**), donc dans le fichier PSPICE.PRB ou dans un fichier (**other file**) connu et accessible par tous les utilisateurs. <u>Attention</u> : lors d'une mise à jour du logiciel, il se peut que le fichier PSPICE.PRB soit mis à jour. Par conséquent, effectuez une sauvegarde du PSPICE.PRB si vous avez modifié ce fichier.

Dans le cas présent, on procède plus directement pour obtenir la fréquence de réjection. En effet, au sein de la liste des « Measurements », existe 'CenterFrequency' pour un filtre passe bande. Il suffit d'en faire une copie et de modifier le calcul en inversant les pentes positive et négative.

Accédez à la fenêtre **Trace/Measurements**, sélectionnez CenterFrequency et cliquez sur **Copy**. Nommez la nouvelle fonction 'RejectFreq' et créez la en locale (**use local file**).

Copy Goal Function - 'CenterFreg'				
New Goal Function name RejectFreq				
File to keep Goal Function in				
use local file C:\Program Files\DrCAD Demo\Applications\ap				
C use global file C:\Program Files\OrCAD Demo\PSpice\COMM				
O other file				
<u>Q</u> K <u>C</u> ancel <u>H</u> elp				

Hodifiez les deux dernières lignes (inversion des pentes n et p).

Edit Goal Function				
RejectFreq(1, db_level) = (x1+x2)/2				
#Desc# Find the midpoint between the X values where the trace first *#Desc#* crosses its maximum value minus db_level (Ymax-db_level) with *#Desc#* a positive slope, and then with a negative slope. *#Desc#* (i.e. Find the <db_level> center frequency of a signal.) *</db_level>				
#Arg1# Name of trace to search *#Arg2#* db level down for measurement *				
#ForceDBArg1#				
{ 1 Search forward level(max-db_level,n) !1 Search forward level(max-db_level,p) !2; } }				
This Goal Function is saved in the file:				
C:\Program Files\OrCAD Demo\Applications\appli4-SCHEMATIC1-ac_100run.prb				
<u> </u>				

Pour effectuer l'analyse des performances, sélectionnez l'icône . Accédez au menu **Trace/Add Trace** et sélectionnez **RejectFreq(V(out), 10)** (10 dB en dessous du maximum).

L'affichage des statistiques précise :

- n samples : nombre d'itérations de la simulation analysée,
- n divisions : nombre de divisions de l'intervalle [Xmin, Xmax] utilisées pour réaliser l'histogramme,
- mean : moyenne arithmétique des valeurs prises par la fonction d'évaluation,
- sigma : écart-type des valeurs prises par la fonction d'évaluation,
- minimum : valeur minimale de la fonction d'évaluation,
- 10th %ile : valeur de l'axe X telle que 10% des valeurs prises par la fonction d'évaluation lui soient inférieure,

- median : valeur de l'axe X telle que 50% des valeurs prises par la fonction d'évaluation lui soient inférieure,
- 90th %ile : valeur de l'axe X telle que 90% des valeurs prises par la fonction d'évaluation lui soient inférieure,
- maximum : valeur maximale de la fonction d'évaluation.
- ✓ Visualisez le fichier de résultats et en particulier le tri des données en accédant à View/Output File.

👹 SCHEMATIC1-ac	c_100run - OrCAD PSpice A/D Demo 🕒 [appli4-SCHEMATIC1-ac_100run.out (ac 💻	
<u></u> <u>F</u> ile <u>E</u> dit ⊻iew	Simulation Irace Plot Tools Window Help	ЪХ
] 🖹 ▼ 😅 🕍 🖬	🖥 🎒 📗 🎉 🖴 🕰 🛛 🕰 🖊 🎘 🎘 🧏 📗 SCHEMATIC1-ac_100run 💿 🕨	Ш
<u> </u> < < < < <	□ 匝 🐱目 四兆 \$P ~ \$F 水米米球体球路站在发	
**** 50	DRTED DEVIATIONS OF V(OUT) TEMPERATURE = 27.000 DEG C	
	MONTE CARLO SUMMARY	
*******	***************************************	
- 31.1	1 dB	
RUN	MINIMUM VALUE	
Pass 17	.0221 at F = 3.0347E+06 (711.17% of Nominal)	
Pass 32	.0191 at F = 2.7998E+06 (613.64% of Nominal)	
Pass 9	.014 at F = 3.0699E+06 (448.75% of Nominal)	٦
appli4-SCH	appli4-SCHE	
×	Analysis (Watch) Devices /	
For Help, press F1		<u>^- //</u>

APPLICATION n°5 : Evaluation du bruit

Cette analyse ne peut se faire que lors d'une étude fréquentielle (Analyse AC). L'application utilise le même schéma que précédemment.

Configuration de l'analyse Noise

- Rechargez le projet 'application4.OPJ' et créez un nouveau profil de simulation de nom 'bruit'.
- Dans la fenêtre Simulation Settings, choisissez AC Sweep/Noise dans Analysis type. Définissez le balayage en fréquence et au niveau de Noise Analysis, validez l'option Enabled. Précisez ensuite au simulateur la grandeur de sortie étudiée, ainsi que la grandeur d'entrée sur laquelle sera calculé le bruit équivalent total.

Simulation Settings - bruit		×
General Analysis Include Files	Libraries Stimulus Option	ns Data Collection Probe Window
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	 AC Sweep Type ○ Linear ○ Logarithmic ○ Decade ○ Decade ○ Enabled ○ Output I/V Sou Interval 	Start Frequency: 100k End Frequency: 100meg Points/Decade: 200 Voltage: V(out) urce: V1 t
	OK Annu	ller Aide

<u>Remarque</u>: Les composants possédant un modèle de bruit sont la résistance, le transistor AsGa, la diode, le transistor JFET, le transistor MOSFET, le transistor bipolaire, l'interrupteur contrôlé en tension (VSWITCH), l'interrupteur contrôlé en courant (ISWITCH).

Dans Pspice, vous avez accès aux bruits de papillotement (NF : flicker noise), de grenaille (NS : shot noise), thermique (N) et total de chaque composant, source de bruit. Ces bruits s'expriment en Volt²/Hz.

NTOT(ONOISE) : bruit total du système en sortie ΣΝΤΟΤ (composants).
 V(ONOISE) : représente la valeur efficace du bruit total de sortie.
 V(INOISE) : représente la valeur efficace du bruit ramené à l'entrée du système.

APPLICATION n°6 : Analyse Worst Case

L'analyse Worst Case est utilisée lorsque vous avez fixé des tolérances sur des composants et que vous souhaitez trouvez une combinaison de ces tolérances donnant le cas le plus défavorable audessus et au-dessous d'une valeur ou courbe nominale.

PSPICE réalise tout d'abord, une simulation du fonctionnement sélectionné (analyse du continu ou fréquentielle ou transitoire) avec les valeurs nominales des composants. Puis, pour chaque composant dont les tolérances sont spécifiées, PSPICE réalise une simulation afin de déterminer la valeur qui donne le résultat le plus défavorable en sortie. Lorsque toutes ces valeurs sont connues, PSPICE les utilise pour réaliser une dernière simulation et déterminer ainsi le cas de fonctionnement le plus défavorable du circuit.

Dans cette application, vous utiliserez le filtre réjecteur à 3 MHz. Quatre composants possèdent des tolérances (20%), ce qui conduira PSPICE à réaliser 6 runs (nominal, pour C_1 , pour C_2 , pour L_1 , pour L_2 , worst case).

Configuration de l'analyse Worst Case

Créez un nouveau profil de simulation de nom 'pirecas' à partir du projet 'application4.OPJ'. Dans la fenêtre Simulation Settings, définissez le balayage en fréquence au sein d'une analyse AC, puis sélectionnez Monte Carlo/Worst Case dans le menu Options et validez le bouton Worst Case/Sensibility.

Simulation Settings - pirecas	2
General Analysis Include Files	Libraries Stimulus Options Data Collection Probe Window
Analysis type:	C Monte Carlo
AC Sweep/Noise	● Worst-case/Sensitivity Output variable: VdB(out)
<u>□</u> ptions: ■ General Settings	Monte Carlo options <u>N</u> umber of runs: [1400]
Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	Use distribution: Uniform Vistributions Eandom number seed: [132767]
Save Bias Point	Save data from www.save-data.from runs
	Worst-case/Sensitivity options
	Limit devices to type(s):
	Save data from each sensitivity run
	More Se <u>t</u> tings
	OK Annuler <u>A</u> ppliquer Aide

Output variable : signal étudié lors de l'analyse Worst Case. Attention, dans notre cas VdB(out).

Dans le champ Worst-case /Sensitivity options,

Vary devices that have : spécifie les composants qui seront pris en compte lors de l'analyse Worst Case (composants possédant une tolérance, composants définis dans un lot, composants définis dans un lot et possédant une tolérance).

Limit devices to type(s) : liste des composants sur lesquels on désire faire l'analyse. Par défaut, tous les composants supportant une spécification de tolérances donnent lieu à une analyse. Save data from each sensitivity run : tous les résultats sont visualisables.

Cliquez sur l'onglet **More Settings** pour compléter le paramétrage de votre analyse.

Monte Carlo/Worst-Case Output File Options	×
Function The function is performed on an output variable (for example, V(1)). The result is listed in the output (.DUT) file only.	OK Cancel
Find: the greatest difference from the nominal run (YMAX)	
Evaluate only when the sweep variable is in the range:	
Worst-Case direction	
List model parameter values in the output file for each run	

La barre de défilement Find permet de préciser le type de recherche :

- YMAX : Recherche l'écart maximal entre la courbe nominale et la courbe de l'itération n.
- MAX : Recherche la valeur maximale sur la courbe pour l'itération n.
- **MIN** : Recherche la valeur minimale sur la courbe pour l'itération n.
- **RISE** : Recherche la première occurrence supérieure à la valeur RISE/FALL.
- FALL : Recherche la première occurrence inférieure à la valeur RISE/FALL.

Le champ Worst Case Direction permet la recherche du cas le plus défavorable :

- Hi au-dessus de la valeur nominale
- Lo en-dessous de la valeur nominale.

Pour les opérations YMAX et MAX, cette direction est par défaut HI, pour toutes les autres opérations, cette direction est par défaut LOW.

Un dernier paramètre RELTOL est nécessaire pour ce type d'analyse (précision relative des calculs). Il spécifie d'étudier la sensibilité de la sortie en faisant varier chaque valeur de composant par pas égal à RELTOL.

Cliquez sur l'onglet Options de la fenêtre Simulation Settings. Choisissez dans Category, Analog Simulation et positionnez-vous sur Relative accuracy of V's and I's. Fixez RELTOL à 0.001.

Simulation Settings - pirec	as					×
General Analysis Include	Files Libraries	Stimulus	Options	Data Collec	tion	Probe Window
Category: Analog Simulation Gate-level Simulation Output file	Relative <u>a</u> ccura Best accuracy o Best accuracy o Best accuracy o Minimum condu DC and bias "bl	cy of V's ar of <u>v</u> oltages: of c <u>u</u> rrents: of c <u>h</u> arges: ctance for ind'' iteratio	nd I's: any <u>b</u> ranc i n limit:	0.001 1.0u 1.0p 0.01p 1.0E-12 150	volts amps coulor 1/ohn	(.OPTION) (RELTOL) (VNTOL) (ABSTOL) mbs (CHGTOL) (GMIN) (ITL1)
	DC and bias "be Iransient time p Default <u>n</u> ominal	est guess'' i oint iteratio temperatur stepping to i	teration lim n limit: e: improve co	nit: 20 10 27.0 privergence.	°C	(ITL2) (ITL4) (TNOM) (STEPGMIN)
		SFET Optic	ons Ai	dvanced Opt	ions	IPREURDER)

Simulation

→ Lancez la simulation, puis chargez tous les résultats.

Available Sections		
** circuit file for profile: pirecasMIN	IAL 27.0 Deg	run nominal
** circuit file for profile: pirecasC1 (C_C1 C 27.0 Deg	
** circuit file for profile: pirecasU2 U	C_C2C 27.0 Deg	runs pour C
** circuit file for profile: pirecas 121	121 27.0 Deg	
** circuit file for profile: pirecasL DI	EVICES 27.0 Deg	worst case
J		
<u>A</u> ll <u>N</u> one		<u> </u>

pour C_1 , C_2 , L_1 , L_2

Visualisez les résultats. *

Cette simulation montre que, pour des composants de tolérance 20%, on obtient une variation relative de la fréquence de réjection de l'ordre de 16.6% dans le cas le plus défavorable. Avec un tel écart par rapport à la fréquence idéale, le filtrage n'est environ que de -14 dB au lieu de -70 dB à 2.9 MHz.

Visualisez le fichier de résultats en accédant à View/Output File. A

Le fichier fait apparaître l'écart observé sur V(out) en dB par rapport à sa valeur nominale pour chaque évaluation de la valeur d'un composant dans le cas le plus défavorable. Il faut remarquer que ceux-ci sont donnés par ordre d'influence.

SORTED DEVIATIONS OF VDB(OUT) TEMPERATURE = 27.000 DEG C SENSITIVITY SUMMARY Mean Deviation = 5.5774 Sigma = 2.3607 RUN MAX DEVIATION FROM NOMINAL L L2 L L2 L 7.942 (3.36 sigma) higher at F = 2.9065E+06(-112.97% change per 1% change in Model Parameter) C C2 C C2 C 7.9341 (3.36 sigma) higher at F = 2.9065E+06(-112.86% change per 1% change in Model Parameter) 3.2187 (1.36 sigma) higher at F = 2.9065E+06 C_C1 C_C1 C (-45.783% change per 1% change in Model Parameter) 3.2146 (1.36 sigma) higher at F = 2.9065E+06 $L_L1 L_L1 L$ (-45.725% change per 1% change in Model Parameter)

Les modifications apportées aux composants pour réaliser la simulation du cas le plus défavorable apparaissent ci-dessous. Ils ont tous pris leur valeur maximale.

****	UPDATED MODEL PA	ARAMETERS	TEMPERATUR	E = 27.000 DEG C			
	WORST CASE ALL DEVICES						
*****	********	*****	******	****			
DEVI(C_C C_C L_L1 L_L2	CE MODEL 1 C_C1 2 C_C2 L_L1 4 L_L2	PARAMETER C C L L	NEW VALUE 1.2 1.2 1.2 1.2 1.2	(Increased) (Increased) (Increased) (Increased)			

Les résultats statistiques de cette simulation donne un écart de 55.681 dB au-dessus de la nominale à la fréquence de 2.9065 MHz.

APPLICATION n°7 : Analyse de sensibilité

Cette analyse produit des résultats visibles uniquement dans le fichier OUTPUT. Le but est de connaître dans quelle proportion une grandeur du circuit (courant ou tension **continue**) sera affectée par la variation des valeurs des composants ou des paramètres des modèles de composants intrinsèques (diode ou transistor).

L'application présente permet d'évaluer les tolérances requises sur les valeurs des résistances d'un pont de Wheathstone pour respecter les spécifications d'un cahier des charges.

Saisie du schéma

Il s'agit d'étudier la sensibilité de la tension différentielle V(A,B) en fonction des différents éléments du circuit.

Après avoir créé un nouveau projet de nom 'application7', saisissez sur la PAGE1 le schéma.

Profil de simulation

Accédez au menu Pspice/New Simulation Profile. Donnez un nom à votre analyse. Ensuite, la fenêtre Simulation Settings, choisissez Bias Point dans Analysis type. Validez Perform Sensitivity analysis et tapez V(A,B) pour étudier cette tension différentielle.

Résultats de la simulation

Hereit Stammer and Stammer Contract (View/Output File).

2	6CHEMA	TIC1-dc - OrCAD	PSpice A/D Demo	- [application5-SC	HEMATIC1-dc.out (active)]	_ 🗆 🗵
E	<u>F</u> ile <u>E</u> di	t <u>V</u> iew <u>S</u> imulation	<u>T</u> race <u>P</u> lot T <u>o</u> ols	<u>W</u> indow <u>H</u> elp		_ 8 ×
*) 🗸 🛛 🗖	; 😂 🖬 🖨 📗	X 🖻 🛍 🗠 S	= 	SCHEMATIC1-dc) II
		\$ € Ш Бь №	* 🗏 🗠 🚿 V	シ げ 木 キ	《水泽标》。	0
	****	DC SENSITI	IVITY ANALYSIS	TEMPERAT	TURE = 27.000 DEG C	
	*****	******	*****	******	******	*
	DC SEN	ISITIVITIES OF	OUTPUT V(A,B)			
		ELEMENT	ELEMENT	ELEMENT	NORMALIZED	
		NAME	VALUE	SENSITIVITY (VOLTS/UNIT)	SENSITIVITY (VOLTS/PERCENT)	
				,	,	
		R_R4 D D3	1.000E+04	-2.500E-04	-2.500E-02	
		R R2	1.200E+02	2.083E-02	2.500E-02	
		R_R1	1.200E+02	-2.083E-02	-2.500E-02	
		A_A1	1.000E+01	0.000E+00	0.000E+00	_
	applicat	ion5				
	o:	· · · ·		als Barra Are		
즭	Simulat	ion complete	A	Analysis / W	atch / Devices /	
For I	Help, pres	s F1			100%	

Le tableau des sensibilités montre que l'influence de la valeur de la tension d'alimentation est totalement négligeable et que, par ailleurs, la somme des sensibilités relatives 4×0.025 donne une sensibilité totale de 0.1 V/% pour ce montage.

En choisissant des résistances à 0.1%, l'erreur maximale sur V(A,B) sera donc de 10 mV.

Développement mathématique :

La tension différentielle V(A,B) a pour expression
$$V(A,B) = \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}\right)V_1$$

En développant au premier ordre la fonction $V(A,B) = f(R_1, R_2, R_3, R_4, V_1)$, on obtient :

$$dV(A,B) = \frac{\partial V(A,B)}{\partial R_1} dR_1 + \frac{\partial V(A,B)}{\partial R_2} dR_2 + \frac{\partial V(A,B)}{\partial R_3} dR_3 + \frac{\partial V(A,B)}{\partial R_4} dR_4 + \frac{\partial V(A,B)}{\partial V_1} dV_1$$

La sensibilité de la tension différentielle vis-à-vis de R_2 , par exemple, est :

$$\frac{\partial V(A,B)}{\partial R_2} = \frac{R_1}{(R_1 + R_2)^2} V_1 = 2.083 \ 10^{-2} \ V/\Omega \quad \text{ou normalisée} \quad \frac{\partial V(A,B)}{\partial R_2} = 2.083 \ 10^{-2} \frac{120}{100} = 0.025 \ V/\%$$

La sensibilité totale du montage est donnée par la somme des sensibilités relatives de la tension de mesure vis-à-vis de chacun des éléments, soit $dV(A, B) = 4 \times 0.025 = 0.1 \text{ V} / \%$

APPLICATION n°8 : FFT et Série de Fourier

Le but est d'effectuer le calcul de la FFT d'un signal périodique, puis d'interpréter les résultats selon les diverses valeurs des paramètres temporels de l'analyse (temps de simulation, pas maximum de calcul).

Saisie du schéma

Il s'agit d'un oscillateur à pont de Wien dont l'étage de gain utilise un JFET pour l'entretien des oscillations dans le retour de contre-réaction.

A remarquer la condition initiale mise sur l'équipotentielle 'out' et disponible dans la librairie SPECIAL.OLB de symbole IC1 qui va permettre un démarrage de l'oscillateur plus rapide.

Après avoir créé un nouveau projet de nom 'application8' et localisé dans le répertoire de travail, saisissez le schéma sur la page 1.

Profil de simulation

- ⁻⁺ Dans la fenêtre **Simulation Settings**, paramétrez une analyse transitoire de 0 s à 20 ms et fixez le pas de calcul (**Maximum step size**) à 50 μs.

Résultats de la simulation

Observez dans PSPICE, la forte distorsion du signal V(out) et mesurez sa fréquence à l'aide des curseurs.

On s'intéresse au calcul de la FFT qui s'effectue dans PSPCISE A/D.

Axis Settings	X
XAxis XAxis XGrid XGrid	
- Data Range	Use Data
Auto Range	C <u>F</u> ull
C User Defined	<u>R</u> estricted (analog)
OHz to 28KHz	8.531ms to 18.132ms
Scale	Processing Options
• Linear	I∕ Fourier
O Log	Eerformance Analysis
Axis <u>V</u>	ariable
OK Cancel <u>S</u> ave A	As Default Reset Defaults Help

Dans ces conditions, le calcul de la FFT est effectué précisément sur 6 périodes du signal V(out), mesurées aux curseurs précédemment.

- Mesurez la fréquence du fondamental et concluez.
- Relevez l'amplitude du continu et des 5 premiers harmoniques.
- A Mesurez la largeur des raies.

Excursion en fréquence

Il est également très important de noter que l'excursion en fréquence de la FFT dépend du pas d'échantillonnage des signaux. A l'occurrence, le pas d'échantillonnage dépend du temps total de simulation et du nombre de points de calcul total de la simulation. Ce nombre de points de calcul est systématiquement ramené par interpolation linéaire à la puissance de 2 la plus proche.

L'excursion en fréquence est donnée par la relation $f_{max} = F_e/2$ où F_e est la fréquence d'échantillonnage (théorème de Shannon) :

$$T_{\rm e}$$
 = pas d'échantillonnage = $\frac{durée \ de \ simulation}{nombre \ d' \ échantillons}$

Le choix de la fréquence d'échantillonnage F_e doit être tel que les composantes de fréquence supérieure à $F_e/2$ soient négligeables, ou du moins inférieures à l'erreur admissible sur les composantes utiles.

Dans le cas présent où la FFT est calculée sur toute la durée de simulation [0-20 ms], on obtient les résultats suivants :

- le nombre de points de simulation est de 1019.
- le nombre d'échantillons utilisé par PROBE est donc de 1024 ($2^{10} > 1019$).
- $T_e = 0.02/1024 = 19.53125 \ \mu s$, soit une fréquence d'échantillonnage $F_e = 51.2 \ kHz$.
- l'excursion en fréquence est alors de $f_{max} = 25.6 \ kHz$.
- $^{\circ}$ Relancez la simulation avec un pas de calcul (**Maximum step size**) de 20 μ s et calculez l'excursion en fréquence.

Largeur des raies

La transformée de Fourier du signal échantillonné étant convoluée avec la transformée de la fenêtre correspondant à une durée d'analyse T, chaque raie se transformera en pic de largeur 2/T.

- A Mesurez à l'aide des curseurs la largeur des raies.
- Relancez une simulation d'une durée de 40 ms et mesurez de nouveau la largeur des raies.

<u>Remarque</u>: Lors de la première simulation, le calcul de la FFT a été effectué avec une fenêtre temporelle correspondant à 6 périodes du signal. Vérifiez par le calcul la largeur des raies et comparez aux deux résultats précédents.

En conclusion :

- la largeur des raies, et donc la résolution en fréquence, sera d'autant plus fine que la durée d'analyse pour le calcul de la FFT sera longue.
- l'excursion en fréquence sera d'autant plus importante que la période d'échantillonnage (pas de calcul) sera faible.

Calcul des coefficients de la série de Fourier

Tout signal périodique e(t) de période T peut être mis sous la forme d'une somme de fonctions sinusoïdales (harmoniques) dont les fréquences sont des multiples de f = 1/T:

$$e(t) = A_0 + \sum_{n=1}^{\infty} C_n \cos(2\pi f t - \varphi_n)$$

avec A_0 composante continue du signal e(t), C_n amplitude de l'harmonique de rang n, φ_n phase de l'harmonique de rang n.

La représentation graphique de l'amplitude des harmoniques en fonction des fréquences correspondantes détermine un spectre de raies qui caractérise le signal.

La connaissance du spectre d'un signal est une donnée essentielle qui permet d'évaluer en particulier :

- la bande passante nécessaire à la transmission d'un signal,
- la pureté d'un signal sinusoïdal caractérisée par le taux de distorsion

harmonique
$$D = \frac{\sqrt{\sum_{n=2}^{\infty} C_n^2}}{C_1}$$
.

Ce calcul sera mené durant une analyse temporelle (**Simulation Settings**)et sera donc configuré dans le menu correspondant en cliquant sur le bouton **Output File Options...** :

Transient Output File Options	×
Print values in the output file every: seconds	ОК
Perform Eourier Analysis	Cancel
Center Frequency: 625 hz	
Number of <u>H</u> armonics: 5	
Output ⊻ariables: V(out)	
Include detailed bias point information for nonlinear controlled sources and semiconductors (/OP)	

Pour la configuration de cette analyse, il est indispensable de connaître et d'indiquer la fréquence du fondamental du signal.

Les résultats sont disponibles dans le fichier OUTPUT.

Relancez la simulation et accédez au menu View/Output File à partir de la fenêtre PSPICE.

🔛 SCH	IEMATIC1-tran -	OrCAD PSpice	A/D - [applic	ation8-SCHEMA	FIC1-tran.out (ad	:tive)]	- 🗆 ×		
🖹 Eile	e <u>E</u> dit <u>V</u> iew <u>S</u> ir	nulation <u>T</u> race	<u>P</u> lot T <u>o</u> ols <u>W</u>	indow <u>H</u> elp			- 8 ×		
Image: Schematic1-tran									
C.			\$ %₩` ~	U.S.	<u>米</u> 素 法 对	計理 经交			
	FOURIER CO.	MPONENTS OF T ENT = -2.790	IRANSIENT RE 0777E+00	SPONSE V(OUT)			•		
	HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMALIZED PHASE (DEG)			
	1 2 3 4	6.250E+02 1.250E+03 1.875E+03 2.500E+03 3.125E+03	8.797E+00 4.988E+00 1.042E+00 1.349E+00	1.000E+00 5.670E-01 1.184E-01 1.533E-01	1.736E+01 1.237E+02 -1.370E+02 1.622E+02	0.000E+00 8.897E+01 -1.891E+02 9.274E+01 -1.852E+02			
	TOTAL	HARMONIC DI:	STORTION =	6.305097E+01	PERCENT	-1.0322402			
For Help	application8	E application8							

Le calcul du taux de distorsion est fourni en fin de fichier.

Vérifiez ce dernier calcul.

Rappels sur la FFT :

Représentation spectrale des signaux non périodiques

En considérant la non périodicité d'un signal e(t) comme résultant d'une excursion à l'infini de la période T d'un signal périodique $e_o(t)$, on peut représenter ce signal par une intégrale de Fourier

$$\mathbf{e}(t) = \int_{-\infty}^{+\infty} E(j2\pi f) e^{j2\pi f t} df \quad \text{avec} \quad E(j2\pi f) = \int_{-\infty}^{+\infty} e(u) e^{-j2\pi f u} du$$

La fonction $E(j2\pi f)$ constitue la transformée de Fourier du signal e(t) et joue le même rôle que les coefficients de Fourier dans le cas de signaux périodiques. De fait, ces coefficients constituent les échantillons de la transformée de Fourier au facteur 1/T près, soit $C_n = \frac{1}{T}E(j2\pi F)$ avec *F* la fréquence du fondamental. Le spectre du signal périodique $e_p(t)$ est alors le résultat d'un échantillonnage de période *F* du spectre du signal e(t), ce qui signifie que périodiser dans le domaine temporel revient à échantillonner dans le domaine fréquentiel.

Il n'y a plus lieu de considérer séparément les séries et les intégrales de Fourier, puisque la transformation de Fourier permet de passer de la représentation temporelle d'un signal à sa représentation fréquentielle et réciproquement.

Transformée de Fourier rapide (FFT)

Pour calculer la transformée $E(j2\pi f)$ d'un signal e(t), un calculateur numérique ne peut accéder qu'à la séquence temporelle $\{e(n)\}$ des échantillons $e(nT_e)$ associée à la mesure d'échantillonnage $e^*(t)$ du signal e(t):

$$e^{*}(t) = \sum_{-\infty}^{+\infty} e(nT_e) \delta(t - nT_e)$$
 avec $\delta(t)$ impulsion de Dirac

Si la fréquence d'échantillonnage est suffisamment grande (condition de Shannon $F_e > 2 f_{max}$ avec f_{max} fréquence maximale du spectre de e(t)), ainsi que la durée de la mesure (troncature temporelle *T*), on peut, en première approximation, admettre que la connaissance de la transformée de Fourier des *M* échantillons de e(t)

$$F(e_{M}^{*}(t)) = \sum_{n=0}^{M-1} e(nT_{e}) e^{-j2\pi t nT_{e}}$$

est équivalente dans le domaine $\left[-F_e/2, +F_e/2\right]$ à celle de la transformée F(e(t)) du signal e(t). Les valeurs de $F(e_M^*(t))$ étant nécessairement calculées en nombre limité, le calculateur délivre finalement M échantillons espacés de $\Delta f \ge MT_e$ de la transformée de Fourier F(e(t)) du signal e(t) dans le domaine $\left[-F_e/2, +F_e/2\right]$.

En fin de compte, si on considère un signal e(t) défini par une séquence $\{e(n)\}$ de *M* échantillons, on définit sa transformée de Fourier discrète (DFT) par la séquence $\{E(k)\}$ telle que :

$$E(k) = \frac{1}{M} \sum_{n=0}^{M-1} e(n) e^{-j2\pi \frac{nk}{M}}$$

Afin de limiter le temps de calcul des DFT, on utilise les algorithmes FFT dont le plus employé applique le nombre d'échantillons tel que $M = 2^m$.

APPLICATION n°9 : Utilisation de l'éditeur de stimuli

Dans cet exemple, nous allons mettre en œuvre l'éditeur « graphique interactif » de stimuli pour la génération d'une onde sinusoïdale.

Les formes d'onde disponibles au niveau analogique sont : EXP (exponential), PULSE, PWL (piecewise linear), SFFM (single-frequency FM), SIN (sinusoïdal).

Saisie du schéma

Après avoir créé un nouveau projet, saisissez le schéma sur la PAGE1.

Pour la source dynamique, appelez le symbole **VSTIM** dans la librairie SOURCSTM.OLB.

La source de tension qui stimule cet amplificateur à pseudo-émetteur commun, va être définie avec l'éditeur de stimuli.

Tout d'abord, donnez un nom au stimulus en sélectionnant l'éditeur d'attributs de VSTIM. Dans le champ **Implementation**, tapez **IN**.

SIN Attributes	×
Name: IN	
Offset value	0.1
Amplitude	20m
Frequency (Hz)	1k
Time delay (sec)	500u
Damping factor (1/sec)	200
Phase angle (degrees)	30
OK Cancel	

Terminez par OK pour voir le signal ainsi défini s'afficher.

Vous pouvez redéfinir les domaines du temps (0 à 4 ms) et de l'amplitude du signal (80 mV à 120 mV) à l'aide du menu **Plot/Axis Settings** et modifier à nouveau les paramètres avec **Edit/Attributes**.

<u>Remarque</u> : Lorsque vous sauvegarder votre stimulus dans votre répertoire de travail, il est stocké avec l'extension .STL au sein du dossier STIMULUS FILES de votre gestionnaire de projet. En éditant ce fichier, vous pouvez modifier votre stimulus.

comportementale. En voici quelques uns :

APPLICATION n°10 : Modélisation comportementale

Dans cette application, nous allons montrer les possibilités offertes par PSPICE en matière de modélisation comportementale. Ce type de simulation signifie qu'un système n'est plus étudié à partir de sa description structurelle, mais à partir des équations qui régissent son fonctionnement. Ainsi, on trouvera dans les librairies de symboles ABM.OLB (Analog Behavior Modeling), BREAKOUT.OLB, MISC.OLB et ANALOG.OLB, tous les éléments nécessaires à une description

Ce schéma représente un asservissement, dont la fonction de transfert en boucle fermée est du deuxième ordre. Il est composé d'un symbole LAPLACE qui réalise la fonction de transfert en boucle ouverte (variable *s* équivalente à p).

- Après avoir créé un nouveau projet, saisissez sur la page 1 le schéma.

Here a transformée de Laplace
 $\frac{1}{\frac{p^2}{\omega_0^2} + \frac{2z}{\omega_0}p + 1}$.

Display Properties	×
Name: DENOM	Font Arial 7
Value: 1 + s*2*z/w0+s*s/(w0*w0)	<u>Change</u> <u>U</u> se Default
Display Format	Calar
O Do Not Display	
• Value Only	Default
C Name and Value	Botation
C Name Only	• 0° • • • • • •
C Both if Value Exists	C <u>9</u> 0° C <u>2</u> 70°
ОК	Cancel <u>H</u> elp

Déclarez à l'aide du symbole PARAM de la librairie SPECIAL.OLB, les paramètres z et w0.

Profil de simulation

- Couplez à l'analyse transitoire une analyse paramétrique pour le paramètre z prenant les valeurs suivantes : 0.25, 0.5, 1, 2.5.

Résultats de la simulation

APPLICATION n°11 : Première approche de la simulation mixte

Nous allons effectuer une première approche de la simulation mixte. Cette application a pour but de démontrer la facilité de sa mise en œuvre. Le circuit étant mixte, les connexions réalisées présentent différents types d'équipotentielles qui sont ici expliqués.

Saisie du schéma

Les éléments digitaux placés dans le schéma, sont traités par PSPICE de manière « transparente » par l'utilisateur.

<u>Remarque</u> : Les alimentations des composants numériques n'apparaissent pas sur le schéma et leur définition est optionnelle. Par défaut, les éléments CMOS et TTL sont alimentés en 5V.

Créez un nouveau projet dans File/New/Project et saisissez le schéma.

Vous trouverez les éléments digitaux au sein de la librairie EVAL.OLB. Constituez ce schéma en prenant la précaution de respecter le nom des équipotentielles, placez 3 sondes de tensions sur les équipotentielles CR, OUT1 et OUT2.

Définissez une simulation temporelle d'une durée de 1 ms et lancez la simulation.

Visualisation des résultats

L'affichage des signaux numériques et analogiques s'effectue simultanément dans Pspice A/D. Tous les signaux appartenant à une équipotentielle en liaison directe avec un élément purement analogique (résistance, transistor, condensateur, ...), sont traités comme des signaux analogiques. Ceux qui ne sont pas en contact avec des éléments analogiques, en l'occurrence OUT2, sont considérés comme digitaux.

<u>Remarque</u> : Pour transformer OUT2 en un signal analogique, il suffit de placer une résistance entre la sortie de l'inverseur et la masse.

Equipotentielles d'interface

Lorsque des composants logiques et analogiques sont connectés, PSpice insère automatiquement un ou plusieurs sous-circuits d'interface qui permettent d'établir une correspondance entre états logiques et caractéristiques d'entrée/sortie analogique. Le nom original de l'équipotentielle est conservé côté analogique et affecté au côté logique d'un suffixe \$AtoD ou \$DtoA selon qu'il s'agit d'une entrée ou d'une sortie logique.

Le schéma de l'application présente trois équipotentielles :

- RC nécessite la génération d'un sous-circuit d'interface AtoD car entrée du 7414,
- OUT1 nécessite la génération de deux sous-circuits d'interface DtoA et AtoD car respectivement sortie du 7414 et entrée du 7404,
- OUT2 nécessite la génération d'un sous-circuit d'interface DtoA car sortie du 7404 vers la résistance terminale (si cette dernière résistance n'est pas présente, alors OUT2 est une équipotentielle logique).
- Chargez les équipotentielles ci-dessous et comparez aux équipotentielles analogiques.

<u>Conclusion</u> : En fonction des connexions réalisées, PSpice est susceptible de reconnaître trois types d'équipotentielles : équipotentielles analogiques, équipotentielles logiques, équipotentielles d'interface.

APPLICATION n°12 : Utilisation de l'éditeur de stimuli en numérique

Après avoir saisi les nuances relatives à l'application précédente, passons à la deuxième approche de ce type de simulation. Les sujets à aborder ici sont les pseudo-symboles et les stimuli digitaux.

Saisie du schéma

Pseudo-symboles

Pour mettre en œuvre une simulation mixte, on dispose de pseudo-symboles dont le rôle est de fixer les états logiques suivants :

H	Niveau logique 1
	Niveau logique 0

Pour placer ces symboles, sélectionnez Place/Power ou cliquez sur l'icône correspondante.

Stimuli digitaux

Les stimuli digitaux à définir avec l'éditeur de stimuli doivent être déclarés à partir DigStim de la librairie SOURCSTM.OLB.

New Stimulus 🛛 🗙
Name: RESET
Analog C <u>E</u> XP (exponential)
C <u>P</u> ULSE
C P <u>W</u> L (piecewise linear)
C SEFM (single-frequency FM)
SIN (sinusoidal)
Digital
C <u>C</u> lock
Signal
O <u>B</u> us Width:
Initial⊻alue: <mark>1</mark>
OK Cancel

La première étape consiste à indiquer le type de signaux à éditer : **Clock** (signal répétitif), **Signal** (1 bit), **Bus** (n bits).

- Choisissez Signal, Initial Value à 1 et OK.
- ^oθ Pour définir l'échelle des temps, accédez au menu Plot/Axis Settings et prenez une échelle de 0 à 1µs.
- Entrez dans le menu Edit/Add. Votre curseur prend la forme d'un crayon et en cliquant directement sur le tracé, vous créez une transition à l'instant t voulu. Créez un signal dont l'état logique est 1 de 0 à 100ns, et 0 au-delà de 100ns. Puis terminez par File/Save.

Visualisation des résultats

Tout d'abord, placer dans le schéma des sondes (**PSpice/Markers/Voltage Level**) sur les équipotentielles nommées. Lancez la simulation.

Par ailleurs, en effectuant un zoom sur les transitions des signaux OUT et OUTBAR, on constatera la modélisation et la représentation par PSPICE des états **R** (**Rise**) et **F** (**Fall**) qui sont définis comme des phases de passage de l'état logique '0' vers '1' et inversement, phases durant lesquelles le signal est dans une plage d'indétermination.

Ainsi, PSpice reconnaît cinq niveaux logiques possibles :

Ces états logiques représentent des définitions limitées qui ne correspondent pas à un niveau de tension déterminé, ni même stable :

- un état logique 0 (ou 1) signifie que la tension correspondante appartient à la plage de tension basse (ou haute) d'une famille de circuits intégrés logiques.
- un état R (ou F) signifie qu'un signal est susceptible de passer de l'état bas à l'état haut (ou l'inverse) à un instant quelconque de l'intervalle spécifié. Il ne donne aucun renseignement quant à la vitesse de croissance (ou de décroissance) de ce signal.

APPLICATION n°13 : Alimentation des circuits numériques

Par défaut, l'ensemble des éléments digitaux (TTL, CMOS, ECL) placés sur le schéma sont déjà alimentés. Par exemple, les familles TTL et CMOS sont alimentées en 5V. Nous pouvons être amené à modifier l'alimentation de certains boîtiers, voir même de la totalité des éléments digitaux d'un schéma.

Pour modifier l'alimentation de certains composants logiques, il faut :

- appeler en librairie SPECIAL.OLB les éléments CD4000_PWR pour la famille CMOS DIGIFPWR pour la famille TTL ECL_10 ?K_PWR pour la famille ECL
- ② préciser la valeur de la tension et le nom des nouvelles broches d'alimentation.

A titre d'exemple, nous reprenons l'application précédente et nous allons modifier uniquement l'alimentation du trigger de Schmitt U3A (7414) de la famille TTL.

Appelez l'élément DIGIFPWR à partir de la librairie SPECIAL.OLB.

Digital Interface Supply	
VOLTAGE = 5V REFERENCE = X1	
DIGIFPWR	

Nous allons utiliser l'éditeur de propriétés afin de modifier certains attributs de l'élément DIGIFPWR.

Ouvrez l'éditeur et dans l'onglet Parts, changez les valeurs de VOLTAGE et REFERENCE (ou directement dans l'élément DIGIFPWR).

Þ	Property Editor								
	New Apply Display Delete Property Filter by: < All >								
		Reference	Source Library	Source Package	Value	VOLTAGE			
1	+ SCHEMATIC1 : PAGE1 : 0V	07	C\PROGRAM FILES\ORCAD\CAPT	DIGIFPWR	DIGIFPWR	3.5V			
4	Parts / Schematic Nets / Pins / Title Blocks / Globals								

 Dans l'onglet Pins, renommez les broches d'alimentation en remplaçant <Gnd_Node> par My_Ref et <Pwr_Node> par My_Power.

	Property Editor							_ 🗆 >	<
	New Apply Display Delete Pro	operty	Filter by:	< All >				▼ Help	
		Name	Net Name	Number	Order	PSpiceDefaultNet	Swap Id	Туре	-
1	E SCHEMATIC1 : PAGE1 : 0V : AGND	AGND	AGND	2	1	0	-1	Power	
2	E SCHEMATIC1 : PAGE1 : 0V : GND	GND	GND	3	2	My_Ref	-1	Power	
3	E SCHEMATIC1 : PAGE1 : 0V : PWR	PWR	PWR	1	0	My_Power	-1	Power	4
•	▼ Parts { Schematic Nets } Pins { Title Blocks { Globa								-

Considérez maintenant l'élément U3A et modifiez, à l'aide de l'éditeur de propriétés, les attributs du composant logique pour faire correspondre les champs \$G_DGND et \$G_DPWR avec les valeurs définies précédemment, respectivement My_Ref et My_Power.

E	d P	Property Editor							_ 0	×
	Ne	lew Apply Display Delete Pro	operty	Filter by:	< All >				▼ Help	J
·		1	Name	Net Name	Number	Order	PSpiceDefaultNet	Swap Id	Туре	
1	ŀ	SCHEMATIC1 : PAGE1 : U3 : A	A	CR	1	0		-1	Input	
	2	SCHEMATIC1 : PAGE1 : U3 : GND	GND	GND	7	2	My_Ref	-1	Power	
:	3	SCHEMATIC1 : PAGE1 : U3 : VCC	VCC	VCC	14	3	My_Power	-1	Power	
-	1	SCHEMATIC1 : PAGE1 : U3 : Y	Y	out1	2	1		-1	Output	Ţ
	•	▶ \ Parts ∠ Schematic Nets ∠ Pins ∠	Title E	Blocks 🔏 G	iobals 🔳					

Les broches d'alimentation du composant U3A sont alors connectées à la nouvelle alimentation.

✓ Relancez une simulation.

Constatez ici une amplitude plus faible du signal V(out1) comparée à celle obtenue lors de la simulation précédente.

APPLICATION n°14 : Utilisation d'un bus

Passons à la troisième approche de ce type de simulation. Les sujets à aborder ici sont le placement automatique des labels de bus et le format de visualisation de ces bus sous Probe.

Saisie du schéma

Le composant CD4017A (CMOS decade counter/divider) appartient à la librairie CD4000. Le stimulus digital RAZ, à définir avec l'éditeur de stimuli, doit être déclaré à partir DigStim de la librairie SOURCSTM.OLB.

- Placez un tel élément pour définir le signal RAZ et accédez le menu Edit/Pspice Stimulus. Ensuite, dans l'éditeur de stimuli, faites Stimulus/New afin de paramétrer le signal : nommez-le 'RAZ', choisissez Signal, Initial Value à 0 et tapez OK.
- \degree Accédez au menu **Plot/Axis Settings** et prenez une échelle des temps de 0 à 2 μ s.
- ⁻⁺ Entrez dans le menu **Edit/Add**, créez un signal dont l'état logique est 0 de 0 à 1 μs, et 1 au-delà de 1 μs, puis terminez par **File/Save**.

Placement automatique des labels de Bus

- ① Tracez un fil et placez un alias sur ce fil que vous nommez D0.
- ② Appuyez sur la touche CTRL. Sélectionnez le fil et déplacez-le à l'endroit voulu à l'aide de la souris. Relachez la touche CTRL (le fil est inséré automatiquement et son label est incrémenté lui aussi).
- ③ Appuyez autant de fois sur F4 que vous avez de signaux à connecter au bus (les alias sont incrémentés).
- ④ Ensuite, placez le bus et nommez-le D[7:0].

Profil de simulation

Entrez dans le menu PSpice/Edit Simulation Settings, puis sélectionnez l'onglet Options. Choisissez la catégorie Gate-level Simulation afin de configurer les paramètres de simulation digitaux :

Simulation Settings - tran				×
General Analysis Include I Category: Analog Simulation Gate-level Simulation Output file	Files Libraries Stimulus Timing Mode Minimum Lypical Maximum Worst-case (min/ma Suppress simulation e Initialize all flip-flops to: Default I/O level for A/D i	Options Data (ax) rror messages in w Therfaces: 1 <u>A</u> dvanced	Collection Pr	obe Window
	ОК	Annuler	Appliquer	Aide

Timing Mode : Choisissez Minimum.

Default I/O Level for A/D Interface : Choisissez Level 1 qui autorise des états de type 0, 1, R, F, et X (Level 2 n'autorise que 0 et 1).

A Lancez la simulation avec une analyse transitoire de 2 ms.

Visualisation des résultats

Les signaux analogiques et digitaux s'affichent automatiquement dans des fenêtres séparées :

Par défaut, la valeur d'un bus s'affiche en Hexadécimal. Pour modifier le format, cliquez sur le signal en question D[7 :0] et entrez dans le menu **Edit/Modify Objet** :

Modify Trace				
Simulation Output Variables		Functions or Macros		
×		Analog Operators and Functions		
CLK1\$AtoD	🗖 Analog	<u> </u>		
CLK1\$DtoA	_	U		
	🔽 <u>D</u> igital			
D1	V-b			
D2	I▼ <u>v</u> oitages	1		
D3	Currents	@		
D4		ABS()		
	🗖 Nojse (V²/Hz)			
D7				
DSTM1:OUT	Maias <u>N</u> ames	AVGX(,)		
JK	Subcircuit Nodes	COS()		
M_UN0001		D()		
M_UN0002				
M_0N0003				
N00020\$AtoD		EXP()		
RAZ		G()		
RESET\$AtoD		IMG()		
U2A:CLRbar				
UZA:J	81 variables listed			
U2A:Nbar		MAXO		
Full ist				
Irace Expression: {D[7:0]};0UT;B Image: DK Image: DK Image: DK				

Tapez dans le champ Trace Expression, la commande {D[7:0]};OUT;B.

Cette commande renomme le signal (OUT) et affiche la valeur du bus en Binaire.

APPLICATION n°15 : Détection des erreurs logiques

Il peut se produire des problèmes lors d'une simulation numérique. Au sein de cette application qui consiste à tester une bascule JK, nous allons générer deux types d'erreurs, à savoir une erreur de SETUP et une erreur de WIDTH.

Saisie du schéma

Après avoir créé un nouveau projet, saisissez le schéma avec les stimulis qui suivent.

🔀 Stimulus Editor - [APPL	ICATION13.stl]					- 🗆 🗵
🔀 <u>F</u> ile <u>E</u> dit <u>S</u> timulus <u>P</u> lo	ot <u>V</u> iew <u>T</u> ools <u>V</u>	<u>W</u> indow <u>H</u> elp				_ 8 ×
	<u> R</u> R R		<u>*</u> 💌 🖘	5		
in clk clr						
05	10005	20005	300NS IIMe	40005	50005	
(198ns)	Place the cur	sor at the position	of the new transitio	n.		

Le signal IN passera à l'état haut à 198 ns.

L'horloge CLK possède une période de 100 ns et un état haut de durée 50 ns. L'impulsion CLR entre 500 ns et 600 ns ne dépassera pas 15 ns.

<u>Remarque</u> : la position de la transition voulue, effectuée à l'aide du curseur en forme de crayon, est indiquée en bas et à gauche de la fenêtre de l'éditeur de stimulis.

Profil de simulation

- Créez un nouveau profil.

Résultats de la simulation

A la fin de la simulation, PSpice indique qu'il a détecté deux Warnings.

Simulation Messages		\times
2 messages oc View a summar	curred during simu y of messages?	ulation.
<u>Oui</u>	Non	

A Le système vous demande si vous souhaitez visualiser les erreurs. Choisissez **Oui**.

🔀 Simulation Messag	ge Summary (D) 🛛 🛛 🗙
Time Message-Type	Device
200.000ns SETUP 531.000ns WIDTH	U1A U1A
Sort by C Section Time C Type C Device	Minimum Severity Level WARNING

 \checkmark Choisissez le problème rencontré à t = 200 ns, de type SETUP, et cliquez sur **Plot**.

Une nouvelle fenêtre s'ouvre dans laquelle le premier problème est décrit :

👹 SCHEMATIC1-tran	- OrCAD PSpice A/D - [(B) application	13-SCHEMATIC1-t	ran.dat (active)]		_ 8 ×
📓 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>S</u>	<u>§</u> imulation <u>T</u> race <u>P</u> lot T <u>o</u> ols <u>W</u> indow <u>H</u>	elp			_ B ×
1	5 XRC 22 /	S S C	HEMATIC1-tran		
<u> </u>	≝♥▤뽇%♥シ♥	<u>水</u> × →	計算检控	程 叉	
CLK IN OUT M_UN9991	1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1		Simulation Message Time Message-Type D >200.000ns SETUP U S31.000ns WIDTH U Sation Section Time Type Device	Summary (A)(B) evice 1A 1A Minimum Severity Level WARNING V	¥ 40ns ¥
×					▲ ▼
Analysis (V	Vatch / Devices /				
For Help, press F1			Time= 600 0E-09	100%	
Il s'agit d'un problème sur le temps de Setup de la bascule qui n'a pas été respecté. Des curseurs sont mis en place pour indiquer la zone interdite de basculement des Data avant l'arrivée du front d'horloge.

Choisissez le deuxième problème rencontré à t = 520 ns, de type WIDTH, et cliquez sur **Plot**.

La nouvelle fenêtre décrit un problème du à la largeur de l'impulsion 10 ns entre 500 et 600 ns du signal CLR.

APPLICATION n°16 : Simulation Worst Case digitale

Dans le cadre de la simulation numérique, PSPICE offre une simulation dite de « WORST-CASE ». Ce type d'analyse permet de représenter, sur une seule et même simulation, les temps de propagations minimal et maximal des composants par l'intermédiaire des états R et F.

Saisie du schéma

Après avoir créé un nouveau projet, saisissez le schéma.

Le montage est réalisé avec un stimulus de nom 'clk' (librairie SOURCSTM.OLB) de type CLOCK tel que l'état initial soit '0', l'état '1' dure 50 ns et une période de 100 ns.

New Stimulus	
Name: Clk	Clock Attributes
Analog © EXP (exponential) © PULSE © PWL (piecewise linear) © SEFM (single-frequency FM) © SIN (sinusoidal) Digital © Clocki © Signal © Bus Width: Initial Value:	Name: clk Specify by: Frequency and duty cycle Period and on time Period (sec) 100ns On time (sec) 50ns Initial value 0 Time delay (sec) 0 OK Cancel Apply

Profil de simulation

Cette simulation est réalisable en définissant une analyse temporelle et en paramétrant la simulation numérique.

- Créez un nouveau profil.
- Dans le menu Simulation Settings, définissez une analyse temporelle de 300 ns, puis avec l'onglet Options, choisissez l'option Worst-case de la section Timing Mode.

Simulation Settings - tran	×
General Analysis Include Files General Analysis Include Files Category: Analog Simulation Gate-level Simulation Output file Image: Category: Image: Category: Analog Simulation Image: Category: Image: Category: <	Libraries Stimulus Options Data Collection Probe Window iming Mode Minimum Jupical Maximum Worst-case (min/max) Suppress simulation error messages in waveform data file. ialize all flip-flops to: X T fault I/O level for A/D interfaces: 1 t Advanced Options Reset
	OK Annuler Appliquer Aide

→ Lancez la simulation (**Pspice/Run**).

Résultats de la simulation

A l'aide des curseurs, mesurez les temps de propagation de la première porte (OUT1).

Temps de propagation donnés par le constructeur pour les 74LS04 :

$$t_{pLH_{min}} = 3.6 \text{ ns}$$
, $t_{pLH_{typ}} = 9 \text{ ns}$, $t_{pLH_{max}} = 15 \text{ ns}$
 $t_{pHL_{min}} = 4 \text{ ns}$, $t_{pHL_{typ}} = 10 \text{ ns}$, $t_{pHL_{max}} = 15 \text{ ns}$

Adresse web : http://www-s.ti.com/sc/psheets/sdls029/sdls029.pdf

Comparez et concluez.