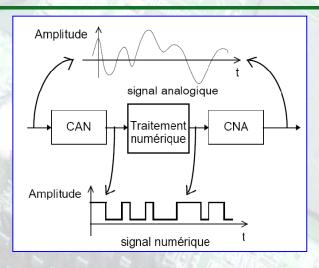
W

Électronique Numérique

Chapitre 3:

Les convertisseurs


- Analogique-numérique (ADC ou CAN)
- Numérique-analogique (DAC ou CNA)

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

.

Les Convertisseurs Numérique-Analogiques et Analogique-Numériques :

DAC/ADC: Généralités

Avantages de la technique numérique (/analogique) :

- -Moins cher (conception, test, fabrication).
- -Beaucoup d'opérations de traitement du signal son plus facile à réaliser en numérique.
- -Moins sensible aux bruits.
- -L'implémentation numérique offre une meilleure flexibilité en permettant la programmation.

E

CNA/CAN: Définitions

Dynamique: Variation possible de tension (ou de courant)

[de sortie pour un CNA / d'entrée pour un CAN]

Format: Format du mot binaire (S+M / C(2) / BCD/ ...)

Résolution: Plus petite tension manipulable (Dynamique/2ⁿ)

[confondu souvent avec le nombre de bit]

Cadence: Vitesse de conversion en «Sample Per Seconde» (SPS)

[peut être exprimé en MHz du signal d'entrée pour un CAN]

Précision : Différence entre la sortie théorique et effective

[exprimé en %, mv ou lsb]

Fidélité : Le fait de donner le même résultat pour une entrée donnée

Linéarité (erreur de) : différence entre la courbe idéale et effective

Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

Les Convertisseurs Numérique-Analogiques et Analogique-Numériques :

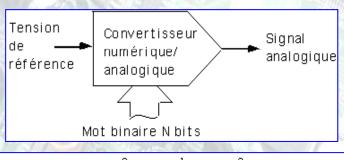
CNA/CAN (doc. Technique de l'ingénieur)

Evolutions du marché des CAN et CNA

Tableau 1 - Les neufs premiers fabricants de CAN et CNA en 2001

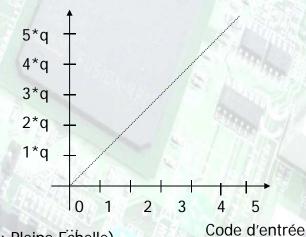
Place	Société	Chiffre d'affaires 2001 pour la conversion (millions de \$)	Part de marché (%)
1	Analog Devices (ADi)	465	33
2	Texas Instruments (TI)	200	14
3	Maxim	154	11
4	Philips	95	7
5	National Semiconductor (NSC)	55	4
6	MicroChip	50	4
7	Intersil	50	4
8	Hitachi	39	3
9	Sony	33	2
Total des 9 sociétés		1 141	82
Total marché		≈ 1 400	100

Les Convertisseurs Numérique-Analogiques


Thierry Perisse perisse@cict.fr U.P.S. Toulouse

Ę

LINEL


Les Convertisseurs Numérique-Analogiques :

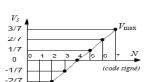
Généralités et Principes

$$\mathbf{U_{out}} = \mathbf{U_{r\acute{e}f}} \cdot \frac{\mathbf{A_{0} \cdot 2^{0} + A_{1} \cdot 2^{1} + A_{2} \cdot 2^{2} + ... + A_{n-1} \cdot 2^{n-1}}}{2^{n} - 1}$$

Vout = N.q

Tension de sortie

U_{ref} correspond à la pleine dynamique (ou PE : Pleine Echelle).


U_{ref} /(2ⁿ-1) est aussi appelée quantum (q) ou lsb

빌

CNA (compléments)

- Nombre de bits : n; nb de valeurs entières distinctes : 2^n ; nb d'intervalles : $2^n 1$
- Pleine échelle (full scale) : Mode unipolaire : PE (FS) = V_{max}

 $\label{eq:max_var} \mbox{Mode bipolaire : PE} \ (FS) = V_{\rm mix} - V_{\rm min} \\ \mbox{ce demicr cas, cn général } V_{\rm min} = V_{\rm max} \ , \ \mbox{ct est appelé "décalage en tension"} \ (\textit{offset}).$

- Sortie analogique : sortie en tension : le CNA est un générateur de Thévenin - sortie en courant : le CNA est un générateur de Norton
- Notations (exemple pour n = 8 bits):

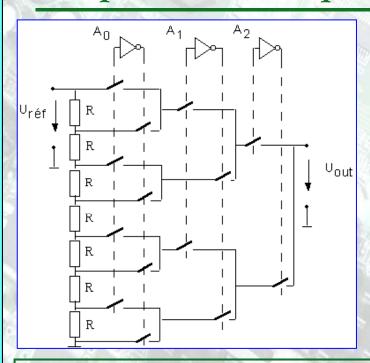
$$V_5 = \frac{10}{255} \left(2^7 D_7 + 2^6 D_6 + ... + 2 D_1 + D_0 \right) = \frac{PE}{2^n - 1} \sum_{i=0}^{n-1} 2^i D_i$$

$$V_{5} = 10 \frac{256}{255} \left(\frac{D_{7}}{2} + \frac{D_{6}}{4} + \dots - \frac{D_{1}}{128} + \frac{D_{0}}{256} \right) = PE \frac{2^{n}}{2^{n} - 1} \sum_{i=1}^{n} \frac{D_{n-i}}{2^{i}}$$

Thierry Perisse perisse@cict.fr U.P.S. Toulouse Chap 3

Les Convertisseurs Numérique-Analogiques :

Quelques Architectures de CNA


DAC (CNA) Potentiométrique (à diviseur de tension);

DAC (CNA) à somme pondérées;

DAC (CNA) à réseau R/2R;

DAC ...

CNA potentiométrique (à diviseur de tension)

Principe: On choisi parmi 2ⁿ tension celle que l'on veut.

Rmque: Toutes les valeurs possibles (2ⁿ) sont fabriquées par le diviseur potentiométrique.

Choix de la sortie par multiplexage (1 parmi 2ⁿ).

Inconvénients :

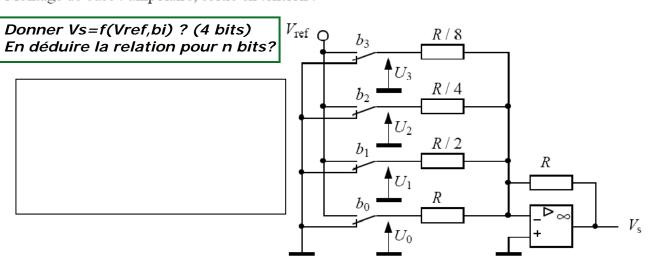
Echelle de résistance. Nb Interrupteurs.

EX: Donner l'expression de Vout=f(Vref) pour les codes suivants 000 001 101? En déduire l'expression générale de Vout =f(Vref,A0,A1,A2)?

Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

LINEL


Electronique Numérique

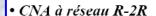
Les Convertisseurs Numérique-Analogiques

Ex: CNA (4 bits) à résistances pondérées

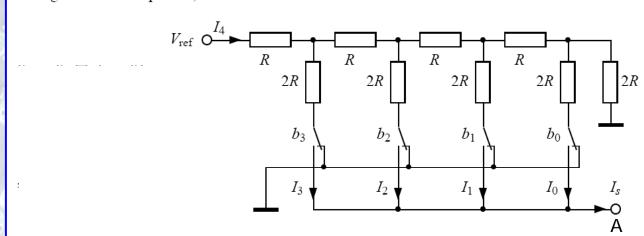
CNA à résistances pondérées

Montage de base : unipolaire, sortie en tension :

Inconvénients de ce montage :


pas réalisable en valeurs normalisées sensibles aux tolérances pas intégrables pas d'appariement possible

Electronique Numérique


Thierry Perisse perisse@cict.fr U.P.S. Toulouse

CNA (4 bits) à réseau R-2R

Montage de base : unipolaire, sortie en courant :

Hyp: Le point A est une masse virtuelle.

Donner l'équation de Is=f(Vref,R,bi) ? (pour 4 bits)

En déduire la relation pour n bits?

Proposer un montage permettant de convertir Is en une tension Vs.

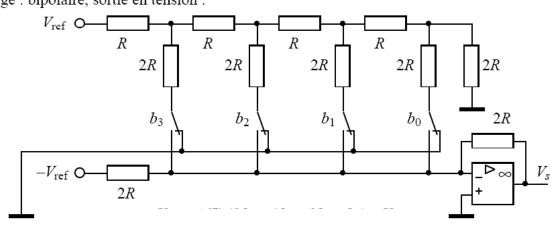
Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

11

W/10 77 9

Electronique Numérique


빌

LINEL

Les Convertisseurs Numérique-Analogiques

CNA (4 bits) à réseau R-2R

- Autre montage : bipolaire, sortie en tension :

Donner l'équation de Vs=f(Vref,R,bi) ? (4 bits) En déduire la relation pour n bits ?

Les Convertisseurs Numérique-Analogiques : LINE Les erreurs systématiques sortie Réponse réelle sortie Réponse réelle analogique analogique analogique Réponse Réponse idéale idéale ent rée Offset 2.44 mV numérique numérique Erreur de gain : Eg Courbe idéale Erreur d'offset : Eo à erreur d'offset nulle Performances de CNA disponibles sur le marché Etat de l'art des CNA sur le marché Estimation de prix Référence commerciale N bits Architecture Technologie Boîtier **Fabricant** Electronique Numérique 2×24 46 kHz **CMOS** 2 64 20 VOFN PCM1772 2 x 24 196 kHz CMOS 200 28 SSOP AD1955 16 100 MHz Parallèle 4 × interp. CMOS 80 860 64 QFP MB86060 12 400 MHz Parallèle CMOS 80 300 80 LQFP MB86061 14 250 MHz Parallèle **CMOS** Non communiqué 54 Fabless (1) Fabless (1)

Chap 3

14

300 MHz

Parallèle

Parallèle

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

CMOS

40

115

20

48 PQFP

28 QSOP

AD9755

MAX 5182

TI

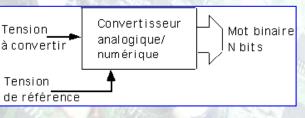
AD

Fujitsu

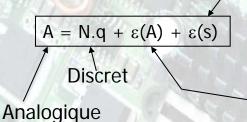
Fujitsu

Impinj

AD

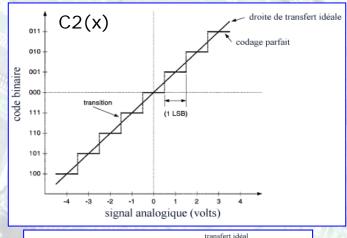

Maxim

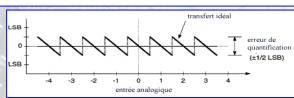
Еg


빌

Les convertisseurs Analogique-Numériques

Généralités et Principes (1)

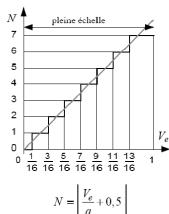



Imperfections

La courbe peut être définie par troncature ou par arrondi (1/2.q d'offset)

Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse


15

NEL

Les Convertisseurs Analogique-Numériques :

Généralités et Principes (2)

- Pleine échelle (full scale) : Mode unipolaire : PE (FS) = $V_{\rm max}$ Mode bipolaire : PE (FS) = $V_{\rm max}$ $V_{\rm min}$
- *Résolution* ou "pas de quantification" ou "incrément" : $\Delta V_e = q = \frac{\text{PE}}{2^n}$
- • Caractéristique (avec N arrondi à l'entier le plus proche) : unipolaire : bipolaire :

$$N = \left\lfloor \frac{V_e - V_{\min}}{q} + 0.5 \right\rfloor$$

빌

Quelques Architectures de CAN

Architecture semi-flash
Architecture à double rampe analogique
Architecture à rampe numérique
Architecture à approximation successives

Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

17

7.4

Les Convertisseurs Analogique-Numériques :

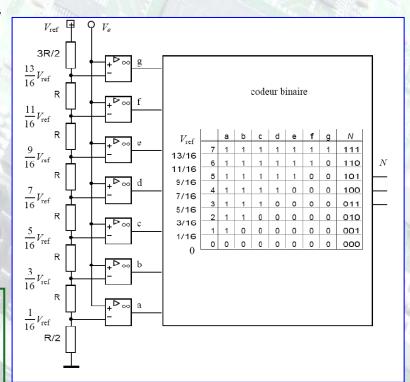
CAN // à comparateurs (Architecture flash)

Exemple d'un CAN 3 bits :

Principe:

Fabriquer 2^{n} -1 seuils à l'aide d'une tension Vref et de 2^{n} résistances; Comparer Ve à ces seuils.

Avantages :


Le plus rapide des CAN(ADC).

Inconvénients :

Nombre de comparateurs (2ⁿ-1). si 10 bits → 1023 Comparateurs!! Nb et qualité des résistances (2ⁿ). si 10 bits → 1024 Résistances!!

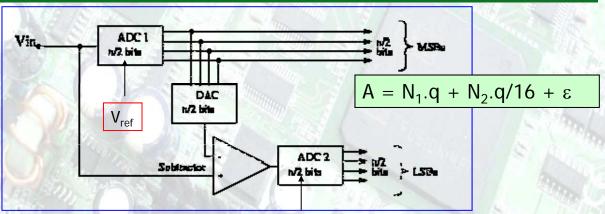
Exercice:

Donner la valeur de N pour une entrée analogique Ve de 3v. avec Vref=10v.

Chap 3

Electronique Numérique

Thierry Perisse perisse@cict.fr U.P.S. Toulouse


I NEI

Electronique Numérique

LINEL

Les Convertisseurs Analogique-Numériques :

Architecture semi-flash

Principe:

Utiliser des ADC flash n/2 bits et un ADC. Le deuxième ADC converti le résidu.

Avantages :

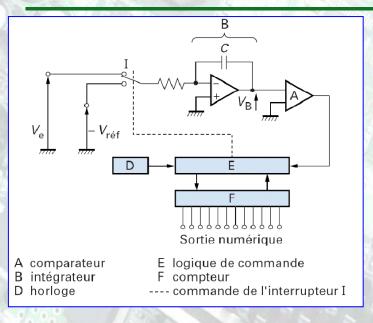
Reste rapide $(2.T_{ADC}+T_{DAC})$

Inconvénients :

Reste compliqué en matériel

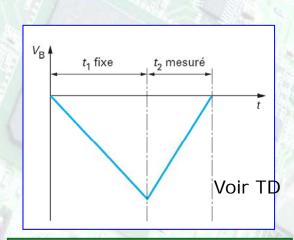
Chap 3

 $V_{ref}/16$


Ex: Pour un CAN semi-flash de 8bits:

- Donner le nombre de comparateurs ?
- Combien de comparateurs a-t-on économisé par rapport à l'architecture Flash?

Thierry Perisse perisse@cict.fr U.P.S. Toulouse


Les Convertisseurs Analogique-Numériques :

Architecture à double rampe analogique

Charger une capa avec Ve (t1 fixe) et la décharger avec -Vref (mesure de t2).

Exercice:

Donner les équations de $V_{\scriptscriptstyle R}(t)$

- pour Ve en entrée.
- puis pour Vref.

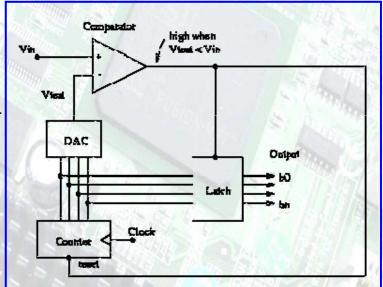
Donner la relation entre Ve d'une part et Vref, t1 et t2 d'autre part.

Architecture à rampe numérique

Principe:

Compter linéairement, faire la conversion NA de cette suite et la comparer avec Vin.

Ouand Vtest>Vin => Arrêt conversion.


Avantages :

Plus d'in fluence I, C Résolution quelconque

Inconvénients :

Lent à très lent (qq ms /qq sec) DAC n bits

Temps de conversion dépend de Vin

Voir TD

Chap 3

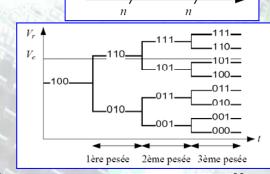
Thierry Perisse perisse@cict.fr U.P.S. Toulouse

Les Convertisseurs Analogique-Numériques :

Architecture à approximation successives

Principe:

Le convertisseur compare la tension d'entrée Ve avec la sortie d'un CNA par pesées successives, comme le ferait une balance. La technique consiste à procéder par dichotomie, en divisant successivement par deux l'intervalle de tension dans lequel est mesurée Ve.


Au départ, le bit de poids fort (MSB) est positionné à 1, les autres bits sont à 0.

Par exemple, pour n = 8, le mot test N = 1000 0000est envoyé au CNA, qui fournit la tension Vr:

- si Vr > Ve, le MSB est mis à 0, et le bit suivant est positionné à 1 : on envoie N = 0100 0000 dans le CNA.

-si Vr < Ve , le MSB ne change pas, et l'on envoie N = 1100 0000 dans le CNA.Etc...

Cet algorithme est réalisé dans un "registre à approximations successives" (Successive Approximation Register ou SAR).

logique de commande

registe à

approximations

successives

Chap 3

Electronique Numérique

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

当

Architecture à approximation successives

Avantages :

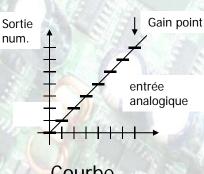
Meilleur compromis vitesse/résolution

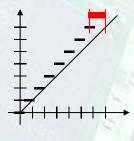
Temps de conversion : il faut *n* passes pour exécuter l'algorithme de dichotomie. L'intérêt de ce montage est que le temps de conversion est constant, et relativement faible.

Exercice: Représenter, en fonction du temps, le signal de sortie Vr du CNA de la chaîne de retour d'un CAN à approximations successives de 3 bits, PE=10v., travaillant en binaire naturel, lorsque la tension à convertir est Ve=4,5v.

Quel est le résultat de la conversion?

Chap 3


Thierry Perisse perisse@cict.fr U.P.S. Toulouse


22

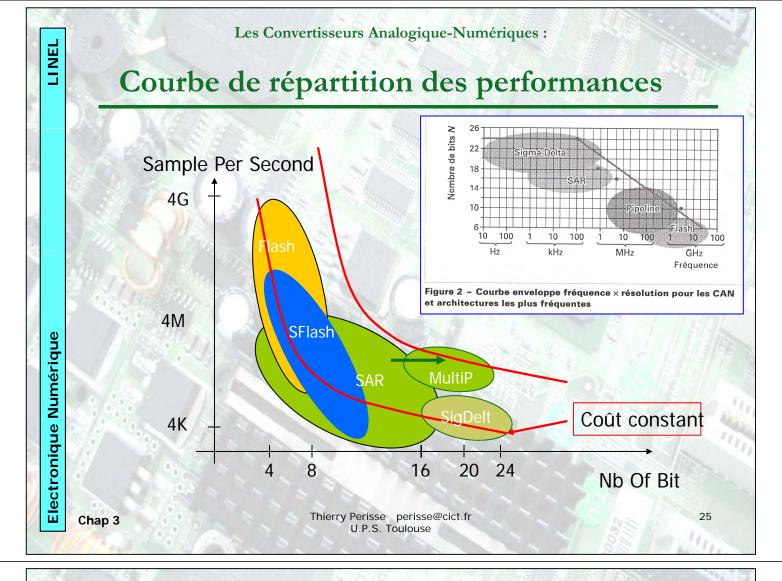
NEL

Les Convertisseurs Analogique-Numériques :

Les erreurs systématiques

Courbe idéale

Erreur d'offset : Eo


Erreur de gain :

Eg

à erreur d'offset nulle

Remarques:

- Les erreurs de non-linéarité intégrale et les erreurs de non-linéarité différentielle ne seront pas abordés dans ce chapitre.
- les erreurs peuvent être exprimées en % de la pleine échelle, en millivolt, en fraction de lsb.
- Il existe des procédures de réglage d'offstet (N=0) et de réglage de gain (N=Nmax).

Les Convertisseurs Analogique-Numériques :

Doc. Technique de l'Ingénieur

N bits	Fréquence	Architecture	Technologie	Estimation de prix (€)	Consommation (mW)	Boîtier	Référence commerciale	Fabricant
2×24	96 kHz	ΣΔ	CMOS	5	300	28 TSSOP	AD1871	Analog Devices
18	800 kHz	SAR	CMOS	30	100	46 LFCSP	AD7679	Analog Devices
16	5 MHz	Pipeline	CMOS	35	500	44 LQFP	SPT8100	Signal Processing Technology
14	65 MHz	Pipeline	CMOS	35	500	48 PQFP	AD9244	Analog Devices
12	210 MHz	Pipeline	BiCMOS	80	1 300	100 TQFP	AD9430	Analog Devices
14	105 MHz	Pipeline	Bipolaire	50	1 500	48 PQFP	AD6645	Analog Devices
8	1,5 GHz	Flash	Bipolaire SiGe	500	5 000	192 ESBGA	MAX 108	Maxim
10	2 GHz	NC (1)	Bipolaire SiGe	NC (1)	4 600	CBGA152	TS83102	ATMEL

Etat de l'art des CAN sur le marché

Electronique Numérique

LINEL

Les Convertisseurs Analogique-Numériques :

Doc. Technique de l'Ingénieur

Tableau 4 – Performances des produits commerciaux usuels ou standards						
Architecture	Résolution	Vitesse (1)	Avantages/Inconvénients			
Intégration	8 à 18 bits	≤ 30 kSPS	 + Résolution élevée + Faible consommation + Excellente réjection analogique du bruit - Très faible vitesse d'échantillonnage 			
SAR	8 à 16 bits	≤ 3 MSPS	+ Résolution élevée et précision + Faible consommation - Vitesse d'échantillonnage limitée			
ΣΔ	16 à 24 bits	≤ 3 MSPS	 + Résolution la plus élevée et précision + Excellente linéarité + Faible consommation + Excellente réjection numérique du bruit + Adaptabilité potentielle - Vitesse d'échantillonnage limitée 			
Pipeline subranging	8 à 16 bits	entre 10 et 400 MSPS	+ Très rapide + Correction digitale des erreurs + Meilleur compromis vitesse résolution			
Flash	6 à 8 bits	entre 1 et 20 GSPS	+ Les plus rapides - Résolution limitée - Puce de dimension importante - Capacité de l'entrée élevée - Forte consommation - Codes erratiques			

Chap 3

Thierry Perisse perisse@cict.fr U.P.S. Toulouse

27